The Resource Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)
Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)
- Summary
- This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introduction to the field as well as a platform for knowledge sharing and dissemination of the latest advances. As a  roadmap to guide further research in an area of increasing importance for the future development of materials science, nanofabrication technology, and nano-electronic devices, the book can be recommended for Physics, Electrical Engineering, and Materials Science departments, and as a reference on micro-nano electronic science and device design. Offers comprehensive coverage of novel nanoscale transistors with quantum confinement effect Provides the keys to understanding the emerging area of the quantum FinFET Written by leading experts in each research area Describes a key enabling technology for research and development of nanofabrication and nanoelectronic devices
- Language
- eng
- Extent
- XI, 363 p. 235 illus., 168 illus. in color.
- Isbn
- 9783319020211
- Label
- Toward Quantum FinFET
- Title
- Toward Quantum FinFET
- Statement of responsibility
- edited by Weihua Han, Zhiming M. Wang
- Language
- eng
- Summary
- This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introduction to the field as well as a platform for knowledge sharing and dissemination of the latest advances. As a  roadmap to guide further research in an area of increasing importance for the future development of materials science, nanofabrication technology, and nano-electronic devices, the book can be recommended for Physics, Electrical Engineering, and Materials Science departments, and as a reference on micro-nano electronic science and device design. Offers comprehensive coverage of novel nanoscale transistors with quantum confinement effect Provides the keys to understanding the emerging area of the quantum FinFET Written by leading experts in each research area Describes a key enabling technology for research and development of nanofabrication and nanoelectronic devices
- Image bit depth
- 0
- Literary form
- non fiction
- Series statement
- Lecture Notes in Nanoscale Science and Technology,
- Series volume
- 17
- Label
- Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)
- Antecedent source
- mixed
- Carrier category
- online resource
- Carrier category code
- cr
- Carrier MARC source
- rdacarrier
- Color
- not applicable
- Content category
- text
- Content type code
- txt
- Content type MARC source
- rdacontent
- http://library.link/vocab/cover_art
- https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319020211&userID=ebsco-test&password=ebsco-test
- Dimensions
- unknown
- http://library.link/vocab/discovery_link
- {'f': 'http://opac.lib.rpi.edu/record=b3455197'}
- Extent
- XI, 363 p. 235 illus., 168 illus. in color.
- File format
- multiple file formats
- Form of item
- electronic
- Isbn
- 9783319020211
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
- c
- Other physical details
- online resource.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Toward-Quantum-FinFET-edited-by-Weihua-Han/9B25ZcsDBQs/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Toward-Quantum-FinFET-edited-by-Weihua-Han/9B25ZcsDBQs/">Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Toward-Quantum-FinFET-edited-by-Weihua-Han/9B25ZcsDBQs/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Toward-Quantum-FinFET-edited-by-Weihua-Han/9B25ZcsDBQs/">Toward Quantum FinFET, edited by Weihua Han, Zhiming M. Wang, (electronic resource)</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>