Coverart for item
The Resource Terrestrial-Satellite Communication Networks : Transceivers Design and Resource Allocation

Terrestrial-Satellite Communication Networks : Transceivers Design and Resource Allocation

Label
Terrestrial-Satellite Communication Networks : Transceivers Design and Resource Allocation
Title
Terrestrial-Satellite Communication Networks
Title remainder
Transceivers Design and Resource Allocation
Creator
Contributor
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Wireless Networks
Terrestrial-Satellite Communication Networks : Transceivers Design and Resource Allocation
Label
Terrestrial-Satellite Communication Networks : Transceivers Design and Resource Allocation
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4917372
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Integrated Terrestrial-Satellite Network Architecture -- 1.3 Related Research and Development -- 1.4 Organizations of this Book -- 1.5 Summary -- 2 Beamforming Transmission -- 2.1 Beamforming in Satellite Communication Systems -- 2.1.1 Multi-Beam Joint Processing -- 2.1.2 Multigroup Precoding -- 2.1.3 Cooperative Beamforming in Terrestrial-SatelliteNetworks -- 2.2 Multicast Beamforming -- 2.2.1 System Model -- 2.2.2 Problem Formulation -- 2.2.3 Optimal Power Allocation Algorithm -- 2.2.3.1 Transformation of Optimization Problem -- 2.2.3.2 Lagrangian Dual Method -- 2.2.4 Performance Evaluation -- 2.3 Smart Communication Satellite -- 2.3.1 System Design -- 2.3.2 Smart Beamforming -- 2.4 Summary -- References -- 3 Interference Cancelation Reception -- 3.1 Position-Assisted Interference Coordination -- 3.1.1 System Model -- 3.1.2 Scheme of Interference Coordination -- 3.1.3 Precision Analysis -- 3.1.4 Performance Evaluation -- 3.2 Channel State Information Based Interference Coordination -- 3.2.1 Model and Formulation -- 3.2.2 Lagrangian Multiplier Method and Algorithm -- 3.2.3 Performance Evaluation -- 3.3 Summary -- References -- 4 Spectrum Sharing -- 4.1 Spectrum Coexistence Between GEO and Terrestrial Systems -- 4.1.1 Interference Analysis and Network Mode -- 4.1.2 Channel and Signal Model -- 4.1.3 Outage Constraint of the GEO System -- 4.1.4 Downlink Link of the Normal Mode -- 4.1.4.1 Expected Interference at the GEO Earth Station -- 4.1.4.2 GEO Earth Station Protection Radius -- 4.1.4.3 Simulations -- 4.1.5 Uplink Link of the Reverse Mode -- 4.1.5.1 Expected Interference Experienced at the GEO Satellite -- 4.1.5.2 GEO Satellite Protection Radius -- 4.1.5.3 Simulations -- 4.2 Spectrum Coexistence Between GEO and NGEO Systems
  • 4.2.1 Interference Analysis and Network Mode -- 4.2.2 Channel and Signal Model -- 4.2.3 Downlink Normal Mode -- 4.2.3.1 Expected Interference Experienced at the GEO Earth Station -- 4.2.3.2 GEO Satellite Protection Radius -- 4.2.3.3 Simulations -- 4.2.4 Uplink Normal Mode -- 4.2.4.1 Expected Interference Experienced at the GEO Satellite -- 4.2.4.2 GEO Satellite Protection Radius -- 4.2.4.3 Simulations -- 4.3 Blind Spot of Spectrum Awareness Techniques -- 4.3.1 System Model -- 4.3.2 Blind Spot Analysis of Uplink Scenario -- 4.3.2.1 The Area of the NGEO Satellite Detecting the Signals from the GEO Earth Station (Detection Area) -- 4.3.2.2 The Area of the NGEO Earth Station Generating the Interference to GEO Satellite (Interference Area) -- 4.3.2.3 Blind Spot -- 4.3.3 Blind Spot Analysis of Downlink Scenario -- 4.3.3.1 The Area of the NGEO Earth Station Detecting the Signals from the GEO Satellite (Detection Area) -- 4.3.3.2 The Area of NGEO Satellite Generating the Interference to GEO Earth Station (Interference Area) -- 4.3.3.3 Blind Spot -- 4.3.4 Simulations and Analysis -- 4.3.4.1 Uplink Simulation Results -- 4.3.4.2 Downlink Simulation Results -- 4.4 Summary -- References -- 5 Spectrum Sensing -- 5.1 Asynchronous MAC-Layer Spectrum Sensing -- 5.1.1 System Model -- 5.1.1.1 Network Entity -- 5.1.1.2 Channel Model -- 5.1.1.3 Activity of Secondary Users -- 5.1.2 Searching Available Channels -- 5.1.2.1 Analysis of SEER -- 5.1.2.2 Analysis of SEES -- 5.1.2.3 Overall Analysis -- 5.1.2.4 Optimal Allocation Result -- 5.1.3 Vacating Strategy -- 5.1.4 Estimation of Channel IPP Parameters -- 5.1.4.1 Moment Matching Estimator -- 5.1.4.2 Imperfect Channel Estimation -- 5.1.5 Impact on PU's Achievable Rate -- 5.1.5.1 Propagation Model -- 5.1.5.2 PU's Achievable Rate -- 5.1.6 Numerical Results -- 5.1.6.1 Channel Parameter Estimation -- 5.1.6.2 Search Strategy
  • 5.1.6.3 Access Time -- 5.1.6.4 PU's Achievable Rate -- 5.2 Asynchronous Cooperative Spectrum Sensing -- 5.2.1 System Model -- 5.2.1.1 Network Entity -- 5.2.1.2 ON/OFF Channel State Model -- 5.2.1.3 Asynchronous Cooperative Spectrum Sensing -- 5.2.2 Detection and False Alarm Probability -- 5.2.2.1 Case S00: P00f and P00d -- 5.2.2.2 Case S11: P11f and P11d -- 5.2.2.3 Case S01: P01f and P01d -- 5.2.2.4 Case S10: P10f and P10d -- 5.2.3 Optimal Sensing Parameters -- 5.2.4 Simulation and Numerical Results -- 5.2.4.1 Detection and False Alarm Probability -- 5.2.4.2 Optimal Sensing Parameters -- 5.3 Effective Management of Terrestrial User's Density -- 5.3.1 System Model -- 5.3.1.1 Network Entity -- 5.3.1.2 Channel Model -- 5.3.1.3 Keep-out Region of Secondary Users -- 5.3.2 Density Control Mechanism -- 5.3.2.1 Restricted by Primary User -- 5.3.2.2 Restricted by Secondary Users Themselves -- 5.3.2.3 Overall Analysis -- 5.3.3 Achievable Rate of Secondary Users -- 5.3.4 Simulation -- 5.3.4.1 Achievable Density -- 5.3.4.2 Average Achievable Rate -- 5.4 Summary -- References -- 6 Multiple Access Resource Allocation -- 6.1 Power Allocation in Terrestrial-Satellite Networks -- 6.1.1 Background -- 6.1.2 System Model -- 6.1.3 Optimal Power Allocation Scheme -- 6.1.4 Performance Evaluation -- 6.2 Resource Allocation in Cloud BasedTerrestrial-Satellite Networks -- 6.2.1 Background -- 6.2.2 System Model -- 6.2.3 Problem Formulation -- 6.2.4 Subchannel and Power Allocation Algorithm -- 6.2.4.1 Transformation of Optimization Problem -- 6.2.4.2 Dual Decomposition Method -- 6.2.5 Performance Evaluation -- 6.3 Summary -- References -- 7 Conclusions and Future Challenges -- 7.1 Conclusions -- 7.2 Future Challenges
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319617688&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4388572'}
Extent
1 online resource (160 pages)
Form of item
online
Isbn
9783319617688
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...