Coverart for item
The Resource Shape Memory Alloy Valves : Basics, Potentials, Design

Shape Memory Alloy Valves : Basics, Potentials, Design

Label
Shape Memory Alloy Valves : Basics, Potentials, Design
Title
Shape Memory Alloy Valves
Title remainder
Basics, Potentials, Design
Creator
Contributor
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Shape Memory Alloy Valves : Basics, Potentials, Design
Label
Shape Memory Alloy Valves : Basics, Potentials, Design
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4068052
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Valve Technology: State of the Art and System Design -- 2.1 Introduction: Actuated Valves in Applications -- 2.2 Electrical Valve Systems -- 2.2.1 Introduction -- 2.2.1.1 SMA: An Actuator Variant with Potential for Industrial Automation -- 2.2.1.2 A New Approach -- 2.2.1.3 Costs of the SMA Actuator -- 2.2.1.4 SMA and Industrial Requirements -- 2.2.1.5 Voltage Supply -- 2.2.1.6 Protection Type (NEMA, IP) -- 2.2.1.7 Ambient and Operating Temperatures -- 2.2.1.8 Certifications -- 2.2.1.9 Customer Benefits and Summary -- 2.2.1.10 Summary -- 2.2.2 Solenoid Valves-Basics -- 2.2.2.1 Physical Basics of Solenoid Drives -- 2.2.2.2 Solenoid Valves: Industrial Demands and Standard Design Types -- 2.2.2.3 The Main Requirements of Solenoid Valves -- 2.2.2.4 Subordinate Requirements of Solenoid Valves -- 2.2.3 Examples of Solenoid Valves -- 2.2.3.1 Direct-Acting 2-Way Plunger Valve -- 2.2.3.2 Direct-Acting Toggle Valve -- 2.2.3.3 Direct-Acting Pivoted Armature Valve -- 2.2.3.4 Direct-Acting Pivoted Rocker Valve -- 2.2.3.5 Diaphragm Valve with Plunger Pilot Control -- 2.3 Thermostatic Valve Systems -- 2.3.1 Introduction -- 2.3.2 Examples of Thermal Valves -- 2.3.2.1 Heating Thermostat Valve -- 2.3.2.2 Thermostatic Mixing Valves -- 2.3.2.3 Scald Protector -- References -- Chapter 3: Introduction to Shape Memory Alloy Technology -- 3.1 Basics of the Shape Memory Effect -- 3.2 Shape Memory Effects -- 3.2.1 The One-Way Effect -- 3.2.2 The Extrinsic Two-Way Effect -- 3.2.3 The Intrinsic Two-Way Effect -- 3.2.4 The Pseudo-Elastic Effect -- 3.3 Shape Memory Alloy Types -- 3.3.1 Binary Nickel-Titanium Alloys -- 3.3.2 Ternary and Quaternary Nickel-Titanium Alloys -- 3.3.3 R-Phase NiTi Alloys -- 3.3.4 Copper-Based Alloys -- 3.4 Manufacturing of Shape Memory Alloys -- References
  • Chapter 4: Introduction to Shape Memory Alloy Actuators -- 4.1 General Overview of SMA Actuators -- 4.2 Influence of Mechanical Preload -- 4.3 Dynamic Behavior of SMA Actuators -- 4.3.1 Comparison of Cyclical Dynamics in Thermal Applications -- 4.3.2 Comparison of Cyclical Dynamics in Electric Applications -- 4.4 Fatigue of Shape Memory Actuators -- 4.4.1 Influence of Joining -- 4.4.2 Influence of Stroke and Load -- 4.5 Designs of SMA Actuators -- 4.5.1 Spring Actuator with Heating Element -- 4.5.2 Standardized Arc-Shaped Wire Actuator -- 4.5.3 Integrated Wire Actuator with Heating Element -- 4.6 Actuator Systems Compared -- 4.6.1 Electrical Drive Systems -- 4.6.1.1 Electric Motors -- 4.6.1.2 Solenoids -- 4.6.1.3 Electrified Expansion Elements -- 4.6.2 Thermal Actuators -- 4.6.2.1 Thermo-Bimetals -- 4.6.2.2 Expansion Elements -- References -- Chapter 5: Sensing Properties of SMA Actuators and Sensorless Control -- 5.1 Introduction -- 5.2 Material Behavior -- 5.3 Sensor/Actuator Behavior -- 5.4 Electronics -- 5.5 Control -- 5.5.1 Resistance to Deflection Sensor Mapping -- 5.5.2 Feedback Control Scheme -- 5.6 Results of Single SMA-Flexure Control -- References -- Chapter 6: Potentials of Shape Memory Technology in Industrial Applications -- 6.1 Actuators -- 6.1.1 Opportunities and Risks -- 6.1.2 Application Potentials -- 6.2 Spring/Damping Elements -- 6.2.1 Opportunities and Risks -- 6.2.2 Application Potentials -- 6.3 Sensors -- 6.3.1 Opportunities and Risks -- 6.3.2 Application Potentials -- References -- Chapter 7: Shape Memory Valves: Motivation, Risks, and Potentials -- 7.1 Introduction and Classification of SMA Valves -- 7.2 Benefits and Handicaps of SMA Valves -- 7.3 SMA Valve Potentials -- 7.3.1 Dynamic Response -- 7.3.2 Ambient Temperature Range -- 7.3.3 Miniaturization -- 7.3.4 Reliability -- 7.3.5 Additional Service Value
  • 7.3.6 Additional Technical Value -- 7.4 Benchmark of Different SMA Valve Concepts -- 7.5 Service Concepts for SMA Valves -- References -- Chapter 8: Design of Thermal SMA Valves -- 8.1 SMA Springs: Thermal Actuator Elements -- 8.2 Dimensioning of SMA Springs for Thermal SMA Valves -- 8.2.1 Step 1: Determination of Requirements -- 8.2.2 Step 2: Determination of Material Properties -- 8.2.3 Step 3: Definition of Constants -- 8.2.4 Step 4: Predefinition of Spring Index w -- 8.2.5 Step 5: Calculation of Stress Correction Factor k -- 8.2.6 Step 6: Shear Strain in the High-Temperature Phase -- 8.2.7 Step 7: Shear Stress in the Low-Temperature Phase -- 8.2.8 Step 8: Shear Stress Damage as a Result of Pre-Strain of the Bias Spring -- 8.2.9 Step 9: Usable Shear Stress During Actuation Phase -- 8.2.10 Step 10: Calculation of Wire Diameter -- 8.2.11 Step 11: Calculation of Number of Active Winding -- 8.2.12 Step 11: Calculation of Actuator Length in the High- and in the Low-Temperature Phase -- 8.2.13 Step 12: Final Actuator Geometry -- References -- Chapter 9: Design of Electrical SMA Valves -- 9.1 Electrical SMA Actuators: Fundamental Effects and System Design -- 9.2 Hindrances During the Development of SMA Valve Drives -- 9.3 SMA Wires as Electrical Actuators -- 9.4 Fast-Track Calculation of SMA Straight Wire Mechanical Design -- 9.5 Numerical Simulation of SMA Wire Actuators -- 9.6 Application Characteristics of Electric SMA Actuator Systems -- 9.6.1 Operating Temperatures -- 9.6.2 Electrical Activation -- 9.7 Functional Structures of Electrical SMA Drives -- 9.8 Component Structure of Electrical SMA Valve Systems -- 9.8.1 Stroke Limiters -- 9.8.2 Stress Protection -- 9.8.3 Connection of SMA Wires -- References -- Chapter 10: Methodology for SMA Valve Development Illustrated by the Development of a SMA Pinch Valve
  • 10.1 Motivation for a SMA Development Methodology -- 10.2 Pinch Valve as an Example of a Methodical Development Process -- 10.3 Methodology for SMA System Development -- 10.4 System Design of SMA-Based Pinch Valve -- 10.4.1 Step 1: Preliminary Feasibility Assessment -- 10.4.1.1 Fulfilled Requirements -- 10.4.1.2 Partially Fulfilled Requirements -- 10.4.1.3 Unfulfilled Requirements -- 10.4.1.4 Requirement Classification for Pinch Valve -- 10.4.2 Step 2: Functional Structure -- 10.4.3 Step 3: Mode of Operation -- 10.4.4 Step 4: Mode of Construction -- 10.4.5 Step 5: Type of Control -- 10.4.6 Step 6: Active Structure and Solution Concept -- 10.5 Domain-Based Design of SMA-Based Pinch Valve -- 10.5.1 Design of Material Mechanics -- 10.5.2 Design of Actuator Mechanics -- 10.5.3 Design of Electronic and Information Processing -- 10.6 System Integration of SMA-Based Pinch Valve -- References -- Chapter 11: Examples of Shape Memory Alloy Valves on Market -- 11.1 Thermal Shape Memory Alloy Valves in Buildings and Vehicles -- 11.1.1 FireChek: Heat-Activated Pneumatic Shut-Off Valve -- 11.1.2 SMV-Control: Valve for Underfloor Heating Regulation -- 11.1.3 SMV-Visco: Valve for Compensation of Viscosity Changes -- 11.1.4 Thermostat Combi Valve for Auxiliary Heaters -- 11.1.5 Water Temperature Control in Mixing Faucets -- 11.1.6 Thermal Shape Memory Alloy Valves in Household Equipment -- 11.2 Electrical Shape Memory Alloy Valves -- 11.2.1 Pneumatic Valve for Lumber Support Systems in Vehicle Seats -- 11.2.2 Small Diaphragm Valve -- 11.2.3 Small Multipurpose Air Valve -- References -- Chapter 12: Future Perspectives of SMA and SMA Valves -- 12.1 Future Perspectives of Shape Memory Alloy Technology -- 12.1.1 Compensation of Thermal Effects by Adaptive Resetting -- 12.1.1.1 Example of an Actuator System -- 12.1.2 Compensation of Functional Fatigue by Refresh Annealing
  • 12.1.3 Functional Integrated Actuator Systems -- 12.1.3.1 Basics of Local Configuration -- Local Configuration Via Heat Treatment -- Local Configuration Via Coating -- Local Configuration Via Structuring -- Local Configuration Via Alloy Composition -- 12.1.3.2 Local Configuration of Actuator Elements -- Example of a Locally Coated Thin-Layer Actuator -- Examples of a Locally Heat-Treated Actuators -- 12.1.3.3 Functional Integrated Actuator -- 12.1.3.4 Procedure for Functional Integration -- 12.1.4 Introduction in Sensing Effects of Pseudoelastic SMA -- 12.2 Future Perspectives of Shape Memory Alloy Valves -- 12.2.1 Shape Memory Alloy Microvalves -- 12.2.2 Exemplary Concepts for New SMA Valves -- 12.2.2.1 Reconfigurable SMA Valve -- 12.2.2.2 Rapid-Manufactured SMA Valve -- References -- Index
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319190815&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4383955'}
Extent
1 online resource (220 pages)
Form of item
online
Isbn
9783319190815
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...