The Resource Shape Memory Alloy Valves : Basics, Potentials, Design
Shape Memory Alloy Valves : Basics, Potentials, Design
- Language
- eng
- Extent
- 1 online resource (220 pages)
- Contents
-
- Preface -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Valve Technology: State of the Art and System Design -- 2.1 Introduction: Actuated Valves in Applications -- 2.2 Electrical Valve Systems -- 2.2.1 Introduction -- 2.2.1.1 SMA: An Actuator Variant with Potential for Industrial Automation -- 2.2.1.2 A New Approach -- 2.2.1.3 Costs of the SMA Actuator -- 2.2.1.4 SMA and Industrial Requirements -- 2.2.1.5 Voltage Supply -- 2.2.1.6 Protection Type (NEMA, IP) -- 2.2.1.7 Ambient and Operating Temperatures -- 2.2.1.8 Certifications -- 2.2.1.9 Customer Benefits and Summary -- 2.2.1.10 Summary -- 2.2.2 Solenoid Valves-Basics -- 2.2.2.1 Physical Basics of Solenoid Drives -- 2.2.2.2 Solenoid Valves: Industrial Demands and Standard Design Types -- 2.2.2.3 The Main Requirements of Solenoid Valves -- 2.2.2.4 Subordinate Requirements of Solenoid Valves -- 2.2.3 Examples of Solenoid Valves -- 2.2.3.1 Direct-Acting 2-Way Plunger Valve -- 2.2.3.2 Direct-Acting Toggle Valve -- 2.2.3.3 Direct-Acting Pivoted Armature Valve -- 2.2.3.4 Direct-Acting Pivoted Rocker Valve -- 2.2.3.5 Diaphragm Valve with Plunger Pilot Control -- 2.3 Thermostatic Valve Systems -- 2.3.1 Introduction -- 2.3.2 Examples of Thermal Valves -- 2.3.2.1 Heating Thermostat Valve -- 2.3.2.2 Thermostatic Mixing Valves -- 2.3.2.3 Scald Protector -- References -- Chapter 3: Introduction to Shape Memory Alloy Technology -- 3.1 Basics of the Shape Memory Effect -- 3.2 Shape Memory Effects -- 3.2.1 The One-Way Effect -- 3.2.2 The Extrinsic Two-Way Effect -- 3.2.3 The Intrinsic Two-Way Effect -- 3.2.4 The Pseudo-Elastic Effect -- 3.3 Shape Memory Alloy Types -- 3.3.1 Binary Nickel-Titanium Alloys -- 3.3.2 Ternary and Quaternary Nickel-Titanium Alloys -- 3.3.3 R-Phase NiTi Alloys -- 3.3.4 Copper-Based Alloys -- 3.4 Manufacturing of Shape Memory Alloys -- References
- Chapter 4: Introduction to Shape Memory Alloy Actuators -- 4.1 General Overview of SMA Actuators -- 4.2 Influence of Mechanical Preload -- 4.3 Dynamic Behavior of SMA Actuators -- 4.3.1 Comparison of Cyclical Dynamics in Thermal Applications -- 4.3.2 Comparison of Cyclical Dynamics in Electric Applications -- 4.4 Fatigue of Shape Memory Actuators -- 4.4.1 Influence of Joining -- 4.4.2 Influence of Stroke and Load -- 4.5 Designs of SMA Actuators -- 4.5.1 Spring Actuator with Heating Element -- 4.5.2 Standardized Arc-Shaped Wire Actuator -- 4.5.3 Integrated Wire Actuator with Heating Element -- 4.6 Actuator Systems Compared -- 4.6.1 Electrical Drive Systems -- 4.6.1.1 Electric Motors -- 4.6.1.2 Solenoids -- 4.6.1.3 Electrified Expansion Elements -- 4.6.2 Thermal Actuators -- 4.6.2.1 Thermo-Bimetals -- 4.6.2.2 Expansion Elements -- References -- Chapter 5: Sensing Properties of SMA Actuators and Sensorless Control -- 5.1 Introduction -- 5.2 Material Behavior -- 5.3 Sensor/Actuator Behavior -- 5.4 Electronics -- 5.5 Control -- 5.5.1 Resistance to Deflection Sensor Mapping -- 5.5.2 Feedback Control Scheme -- 5.6 Results of Single SMA-Flexure Control -- References -- Chapter 6: Potentials of Shape Memory Technology in Industrial Applications -- 6.1 Actuators -- 6.1.1 Opportunities and Risks -- 6.1.2 Application Potentials -- 6.2 Spring/Damping Elements -- 6.2.1 Opportunities and Risks -- 6.2.2 Application Potentials -- 6.3 Sensors -- 6.3.1 Opportunities and Risks -- 6.3.2 Application Potentials -- References -- Chapter 7: Shape Memory Valves: Motivation, Risks, and Potentials -- 7.1 Introduction and Classification of SMA Valves -- 7.2 Benefits and Handicaps of SMA Valves -- 7.3 SMA Valve Potentials -- 7.3.1 Dynamic Response -- 7.3.2 Ambient Temperature Range -- 7.3.3 Miniaturization -- 7.3.4 Reliability -- 7.3.5 Additional Service Value
- 7.3.6 Additional Technical Value -- 7.4 Benchmark of Different SMA Valve Concepts -- 7.5 Service Concepts for SMA Valves -- References -- Chapter 8: Design of Thermal SMA Valves -- 8.1 SMA Springs: Thermal Actuator Elements -- 8.2 Dimensioning of SMA Springs for Thermal SMA Valves -- 8.2.1 Step 1: Determination of Requirements -- 8.2.2 Step 2: Determination of Material Properties -- 8.2.3 Step 3: Definition of Constants -- 8.2.4 Step 4: Predefinition of Spring Index w -- 8.2.5 Step 5: Calculation of Stress Correction Factor k -- 8.2.6 Step 6: Shear Strain in the High-Temperature Phase -- 8.2.7 Step 7: Shear Stress in the Low-Temperature Phase -- 8.2.8 Step 8: Shear Stress Damage as a Result of Pre-Strain of the Bias Spring -- 8.2.9 Step 9: Usable Shear Stress During Actuation Phase -- 8.2.10 Step 10: Calculation of Wire Diameter -- 8.2.11 Step 11: Calculation of Number of Active Winding -- 8.2.12 Step 11: Calculation of Actuator Length in the High- and in the Low-Temperature Phase -- 8.2.13 Step 12: Final Actuator Geometry -- References -- Chapter 9: Design of Electrical SMA Valves -- 9.1 Electrical SMA Actuators: Fundamental Effects and System Design -- 9.2 Hindrances During the Development of SMA Valve Drives -- 9.3 SMA Wires as Electrical Actuators -- 9.4 Fast-Track Calculation of SMA Straight Wire Mechanical Design -- 9.5 Numerical Simulation of SMA Wire Actuators -- 9.6 Application Characteristics of Electric SMA Actuator Systems -- 9.6.1 Operating Temperatures -- 9.6.2 Electrical Activation -- 9.7 Functional Structures of Electrical SMA Drives -- 9.8 Component Structure of Electrical SMA Valve Systems -- 9.8.1 Stroke Limiters -- 9.8.2 Stress Protection -- 9.8.3 Connection of SMA Wires -- References -- Chapter 10: Methodology for SMA Valve Development Illustrated by the Development of a SMA Pinch Valve
- 10.1 Motivation for a SMA Development Methodology -- 10.2 Pinch Valve as an Example of a Methodical Development Process -- 10.3 Methodology for SMA System Development -- 10.4 System Design of SMA-Based Pinch Valve -- 10.4.1 Step 1: Preliminary Feasibility Assessment -- 10.4.1.1 Fulfilled Requirements -- 10.4.1.2 Partially Fulfilled Requirements -- 10.4.1.3 Unfulfilled Requirements -- 10.4.1.4 Requirement Classification for Pinch Valve -- 10.4.2 Step 2: Functional Structure -- 10.4.3 Step 3: Mode of Operation -- 10.4.4 Step 4: Mode of Construction -- 10.4.5 Step 5: Type of Control -- 10.4.6 Step 6: Active Structure and Solution Concept -- 10.5 Domain-Based Design of SMA-Based Pinch Valve -- 10.5.1 Design of Material Mechanics -- 10.5.2 Design of Actuator Mechanics -- 10.5.3 Design of Electronic and Information Processing -- 10.6 System Integration of SMA-Based Pinch Valve -- References -- Chapter 11: Examples of Shape Memory Alloy Valves on Market -- 11.1 Thermal Shape Memory Alloy Valves in Buildings and Vehicles -- 11.1.1 FireChek: Heat-Activated Pneumatic Shut-Off Valve -- 11.1.2 SMV-Control: Valve for Underfloor Heating Regulation -- 11.1.3 SMV-Visco: Valve for Compensation of Viscosity Changes -- 11.1.4 Thermostat Combi Valve for Auxiliary Heaters -- 11.1.5 Water Temperature Control in Mixing Faucets -- 11.1.6 Thermal Shape Memory Alloy Valves in Household Equipment -- 11.2 Electrical Shape Memory Alloy Valves -- 11.2.1 Pneumatic Valve for Lumber Support Systems in Vehicle Seats -- 11.2.2 Small Diaphragm Valve -- 11.2.3 Small Multipurpose Air Valve -- References -- Chapter 12: Future Perspectives of SMA and SMA Valves -- 12.1 Future Perspectives of Shape Memory Alloy Technology -- 12.1.1 Compensation of Thermal Effects by Adaptive Resetting -- 12.1.1.1 Example of an Actuator System -- 12.1.2 Compensation of Functional Fatigue by Refresh Annealing
- 12.1.3 Functional Integrated Actuator Systems -- 12.1.3.1 Basics of Local Configuration -- Local Configuration Via Heat Treatment -- Local Configuration Via Coating -- Local Configuration Via Structuring -- Local Configuration Via Alloy Composition -- 12.1.3.2 Local Configuration of Actuator Elements -- Example of a Locally Coated Thin-Layer Actuator -- Examples of a Locally Heat-Treated Actuators -- 12.1.3.3 Functional Integrated Actuator -- 12.1.3.4 Procedure for Functional Integration -- 12.1.4 Introduction in Sensing Effects of Pseudoelastic SMA -- 12.2 Future Perspectives of Shape Memory Alloy Valves -- 12.2.1 Shape Memory Alloy Microvalves -- 12.2.2 Exemplary Concepts for New SMA Valves -- 12.2.2.1 Reconfigurable SMA Valve -- 12.2.2.2 Rapid-Manufactured SMA Valve -- References -- Index
- Isbn
- 9783319190815
- Label
- Shape Memory Alloy Valves : Basics, Potentials, Design
- Title
- Shape Memory Alloy Valves
- Title remainder
- Basics, Potentials, Design
- Language
- eng
- Cataloging source
- MiAaPQ
- Literary form
- non fiction
- Nature of contents
- dictionaries
- Label
- Shape Memory Alloy Valves : Basics, Potentials, Design
- Link
- http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4068052
- Carrier category
- online resource
- Carrier category code
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Preface -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Valve Technology: State of the Art and System Design -- 2.1 Introduction: Actuated Valves in Applications -- 2.2 Electrical Valve Systems -- 2.2.1 Introduction -- 2.2.1.1 SMA: An Actuator Variant with Potential for Industrial Automation -- 2.2.1.2 A New Approach -- 2.2.1.3 Costs of the SMA Actuator -- 2.2.1.4 SMA and Industrial Requirements -- 2.2.1.5 Voltage Supply -- 2.2.1.6 Protection Type (NEMA, IP) -- 2.2.1.7 Ambient and Operating Temperatures -- 2.2.1.8 Certifications -- 2.2.1.9 Customer Benefits and Summary -- 2.2.1.10 Summary -- 2.2.2 Solenoid Valves-Basics -- 2.2.2.1 Physical Basics of Solenoid Drives -- 2.2.2.2 Solenoid Valves: Industrial Demands and Standard Design Types -- 2.2.2.3 The Main Requirements of Solenoid Valves -- 2.2.2.4 Subordinate Requirements of Solenoid Valves -- 2.2.3 Examples of Solenoid Valves -- 2.2.3.1 Direct-Acting 2-Way Plunger Valve -- 2.2.3.2 Direct-Acting Toggle Valve -- 2.2.3.3 Direct-Acting Pivoted Armature Valve -- 2.2.3.4 Direct-Acting Pivoted Rocker Valve -- 2.2.3.5 Diaphragm Valve with Plunger Pilot Control -- 2.3 Thermostatic Valve Systems -- 2.3.1 Introduction -- 2.3.2 Examples of Thermal Valves -- 2.3.2.1 Heating Thermostat Valve -- 2.3.2.2 Thermostatic Mixing Valves -- 2.3.2.3 Scald Protector -- References -- Chapter 3: Introduction to Shape Memory Alloy Technology -- 3.1 Basics of the Shape Memory Effect -- 3.2 Shape Memory Effects -- 3.2.1 The One-Way Effect -- 3.2.2 The Extrinsic Two-Way Effect -- 3.2.3 The Intrinsic Two-Way Effect -- 3.2.4 The Pseudo-Elastic Effect -- 3.3 Shape Memory Alloy Types -- 3.3.1 Binary Nickel-Titanium Alloys -- 3.3.2 Ternary and Quaternary Nickel-Titanium Alloys -- 3.3.3 R-Phase NiTi Alloys -- 3.3.4 Copper-Based Alloys -- 3.4 Manufacturing of Shape Memory Alloys -- References
- Chapter 4: Introduction to Shape Memory Alloy Actuators -- 4.1 General Overview of SMA Actuators -- 4.2 Influence of Mechanical Preload -- 4.3 Dynamic Behavior of SMA Actuators -- 4.3.1 Comparison of Cyclical Dynamics in Thermal Applications -- 4.3.2 Comparison of Cyclical Dynamics in Electric Applications -- 4.4 Fatigue of Shape Memory Actuators -- 4.4.1 Influence of Joining -- 4.4.2 Influence of Stroke and Load -- 4.5 Designs of SMA Actuators -- 4.5.1 Spring Actuator with Heating Element -- 4.5.2 Standardized Arc-Shaped Wire Actuator -- 4.5.3 Integrated Wire Actuator with Heating Element -- 4.6 Actuator Systems Compared -- 4.6.1 Electrical Drive Systems -- 4.6.1.1 Electric Motors -- 4.6.1.2 Solenoids -- 4.6.1.3 Electrified Expansion Elements -- 4.6.2 Thermal Actuators -- 4.6.2.1 Thermo-Bimetals -- 4.6.2.2 Expansion Elements -- References -- Chapter 5: Sensing Properties of SMA Actuators and Sensorless Control -- 5.1 Introduction -- 5.2 Material Behavior -- 5.3 Sensor/Actuator Behavior -- 5.4 Electronics -- 5.5 Control -- 5.5.1 Resistance to Deflection Sensor Mapping -- 5.5.2 Feedback Control Scheme -- 5.6 Results of Single SMA-Flexure Control -- References -- Chapter 6: Potentials of Shape Memory Technology in Industrial Applications -- 6.1 Actuators -- 6.1.1 Opportunities and Risks -- 6.1.2 Application Potentials -- 6.2 Spring/Damping Elements -- 6.2.1 Opportunities and Risks -- 6.2.2 Application Potentials -- 6.3 Sensors -- 6.3.1 Opportunities and Risks -- 6.3.2 Application Potentials -- References -- Chapter 7: Shape Memory Valves: Motivation, Risks, and Potentials -- 7.1 Introduction and Classification of SMA Valves -- 7.2 Benefits and Handicaps of SMA Valves -- 7.3 SMA Valve Potentials -- 7.3.1 Dynamic Response -- 7.3.2 Ambient Temperature Range -- 7.3.3 Miniaturization -- 7.3.4 Reliability -- 7.3.5 Additional Service Value
- 7.3.6 Additional Technical Value -- 7.4 Benchmark of Different SMA Valve Concepts -- 7.5 Service Concepts for SMA Valves -- References -- Chapter 8: Design of Thermal SMA Valves -- 8.1 SMA Springs: Thermal Actuator Elements -- 8.2 Dimensioning of SMA Springs for Thermal SMA Valves -- 8.2.1 Step 1: Determination of Requirements -- 8.2.2 Step 2: Determination of Material Properties -- 8.2.3 Step 3: Definition of Constants -- 8.2.4 Step 4: Predefinition of Spring Index w -- 8.2.5 Step 5: Calculation of Stress Correction Factor k -- 8.2.6 Step 6: Shear Strain in the High-Temperature Phase -- 8.2.7 Step 7: Shear Stress in the Low-Temperature Phase -- 8.2.8 Step 8: Shear Stress Damage as a Result of Pre-Strain of the Bias Spring -- 8.2.9 Step 9: Usable Shear Stress During Actuation Phase -- 8.2.10 Step 10: Calculation of Wire Diameter -- 8.2.11 Step 11: Calculation of Number of Active Winding -- 8.2.12 Step 11: Calculation of Actuator Length in the High- and in the Low-Temperature Phase -- 8.2.13 Step 12: Final Actuator Geometry -- References -- Chapter 9: Design of Electrical SMA Valves -- 9.1 Electrical SMA Actuators: Fundamental Effects and System Design -- 9.2 Hindrances During the Development of SMA Valve Drives -- 9.3 SMA Wires as Electrical Actuators -- 9.4 Fast-Track Calculation of SMA Straight Wire Mechanical Design -- 9.5 Numerical Simulation of SMA Wire Actuators -- 9.6 Application Characteristics of Electric SMA Actuator Systems -- 9.6.1 Operating Temperatures -- 9.6.2 Electrical Activation -- 9.7 Functional Structures of Electrical SMA Drives -- 9.8 Component Structure of Electrical SMA Valve Systems -- 9.8.1 Stroke Limiters -- 9.8.2 Stress Protection -- 9.8.3 Connection of SMA Wires -- References -- Chapter 10: Methodology for SMA Valve Development Illustrated by the Development of a SMA Pinch Valve
- 10.1 Motivation for a SMA Development Methodology -- 10.2 Pinch Valve as an Example of a Methodical Development Process -- 10.3 Methodology for SMA System Development -- 10.4 System Design of SMA-Based Pinch Valve -- 10.4.1 Step 1: Preliminary Feasibility Assessment -- 10.4.1.1 Fulfilled Requirements -- 10.4.1.2 Partially Fulfilled Requirements -- 10.4.1.3 Unfulfilled Requirements -- 10.4.1.4 Requirement Classification for Pinch Valve -- 10.4.2 Step 2: Functional Structure -- 10.4.3 Step 3: Mode of Operation -- 10.4.4 Step 4: Mode of Construction -- 10.4.5 Step 5: Type of Control -- 10.4.6 Step 6: Active Structure and Solution Concept -- 10.5 Domain-Based Design of SMA-Based Pinch Valve -- 10.5.1 Design of Material Mechanics -- 10.5.2 Design of Actuator Mechanics -- 10.5.3 Design of Electronic and Information Processing -- 10.6 System Integration of SMA-Based Pinch Valve -- References -- Chapter 11: Examples of Shape Memory Alloy Valves on Market -- 11.1 Thermal Shape Memory Alloy Valves in Buildings and Vehicles -- 11.1.1 FireChek: Heat-Activated Pneumatic Shut-Off Valve -- 11.1.2 SMV-Control: Valve for Underfloor Heating Regulation -- 11.1.3 SMV-Visco: Valve for Compensation of Viscosity Changes -- 11.1.4 Thermostat Combi Valve for Auxiliary Heaters -- 11.1.5 Water Temperature Control in Mixing Faucets -- 11.1.6 Thermal Shape Memory Alloy Valves in Household Equipment -- 11.2 Electrical Shape Memory Alloy Valves -- 11.2.1 Pneumatic Valve for Lumber Support Systems in Vehicle Seats -- 11.2.2 Small Diaphragm Valve -- 11.2.3 Small Multipurpose Air Valve -- References -- Chapter 12: Future Perspectives of SMA and SMA Valves -- 12.1 Future Perspectives of Shape Memory Alloy Technology -- 12.1.1 Compensation of Thermal Effects by Adaptive Resetting -- 12.1.1.1 Example of an Actuator System -- 12.1.2 Compensation of Functional Fatigue by Refresh Annealing
- 12.1.3 Functional Integrated Actuator Systems -- 12.1.3.1 Basics of Local Configuration -- Local Configuration Via Heat Treatment -- Local Configuration Via Coating -- Local Configuration Via Structuring -- Local Configuration Via Alloy Composition -- 12.1.3.2 Local Configuration of Actuator Elements -- Example of a Locally Coated Thin-Layer Actuator -- Examples of a Locally Heat-Treated Actuators -- 12.1.3.3 Functional Integrated Actuator -- 12.1.3.4 Procedure for Functional Integration -- 12.1.4 Introduction in Sensing Effects of Pseudoelastic SMA -- 12.2 Future Perspectives of Shape Memory Alloy Valves -- 12.2.1 Shape Memory Alloy Microvalves -- 12.2.2 Exemplary Concepts for New SMA Valves -- 12.2.2.1 Reconfigurable SMA Valve -- 12.2.2.2 Rapid-Manufactured SMA Valve -- References -- Index
- http://library.link/vocab/cover_art
- https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319190815&userID=ebsco-test&password=ebsco-test
- Dimensions
- unknown
- http://library.link/vocab/discovery_link
- {'f': 'http://opac.lib.rpi.edu/record=b4383955'}
- Extent
- 1 online resource (220 pages)
- Form of item
- online
- Isbn
- 9783319190815
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
- c
- Sound
- unknown sound
- Specific material designation
- remote
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Shape-Memory-Alloy-Valves--Basics-Potentials/0fKN-QiBIac/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Shape-Memory-Alloy-Valves--Basics-Potentials/0fKN-QiBIac/">Shape Memory Alloy Valves : Basics, Potentials, Design</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Shape Memory Alloy Valves : Basics, Potentials, Design
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Shape-Memory-Alloy-Valves--Basics-Potentials/0fKN-QiBIac/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Shape-Memory-Alloy-Valves--Basics-Potentials/0fKN-QiBIac/">Shape Memory Alloy Valves : Basics, Potentials, Design</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>