Coverart for item
The Resource Regenerative Medicine - from Protocol to Patient : Biology of Tissue Regeneration

Regenerative Medicine - from Protocol to Patient : Biology of Tissue Regeneration

Label
Regenerative Medicine - from Protocol to Patient : Biology of Tissue Regeneration
Title
Regenerative Medicine - from Protocol to Patient
Title remainder
Biology of Tissue Regeneration
Creator
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Regenerative Medicine - from Protocol to Patient : Biology of Tissue Regeneration
Label
Regenerative Medicine - from Protocol to Patient : Biology of Tissue Regeneration
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4514227
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Foreword: Regenerative Medicine:From Protocol to Patient -- Third Edition -- Literature -- Contents -- Contributors -- Chapter 1: Extracellular Matrix and Tissue Regeneration -- 1.1 Introduction -- 1.2 Stem Cell Niche -- 1.3 Mesenchymal Stromal Cells -- 1.4 Extracellular Matrix -- 1.4.1 Extracellular Matrix: Collagens -- 1.4.2 Extracellular Matrix: Non-Collagen Proteins -- 1.4.3 Extracellular Matrix: Ground Substance -- 1.5 Integrin and Non-integrin Matrix Receptors -- 1.5.1 Integrin-Type Matrix Receptors -- 1.5.2 Non-integrin Matrix Receptors -- 1.6 Matrix Modulating Proteinases -- 1.6.1 Neutral Endoproteinases -- 1.6.2 Acidic Endoproteinases -- 1.7 Wound Healing -- 1.8 Cartilage Extracellular Matrix -- 1.8.1 Culture on Different Scaffolds -- 1.9 Bone -- 1.10 Extracellular Matrix in Heart Regeneration -- 1.10.1 Integrins in the Cell Cycle Withdrawal of Cardiomyocytes -- 1.10.2 Heart Diseases -- 1.10.3 Cell Therapies -- 1.11 Heart and Valve Tissue Engineering -- 1.12 Tumour Extracellular Matrix -- 1.13 Conclusion -- References -- Chapter 2: Stem Cell Niche -- 2.1 Introduction -- 2.2 C.elegans Germline Stem Cell Niche -- 2.3 Stem Cell Niches in Drosophila -- 2.3.1 Germline Stem Cell Niche in the Drosophila Ovary -- 2.3.2 Follicle Stem Cell Niche in the Drosophila Ovary -- 2.3.3 Germline Stem Cell Niche in the Drosophila Testis -- 2.3.4 Intestinal Stem Cell Niche in the Drosophila Midgut -- 2.4 Stem Cell Niches in Mammals -- 2.4.1 The Hematopoietic Stem Cell Niche -- 2.4.2 Skin Stem Cell Niche -- 2.4.3 Intestinal Stem Cell Niche -- 2.4.4 Muscle Stem Cell Niche -- 2.5 Key Components of the Stem Cell Niche -- 2.6 Classification of Stem Cell Niches: Stromal Versus Epidermal -- 2.7 Stem Cell Self-Renewal in the Niche: Division Asymmetry Versus Population Asymmetry -- 2.8 Stem Cell Behavior Within the Niche -- 2.9 Future Perspective -- References
  • Chapter 3: Stem Cells and Asymmetric Cell Division -- 3.1 Introduction -- 3.2 Classifications and Definitions -- 3.3 Mechanisms of Asymmetric Stem Cell Division -- 3.3.1 Initial Polarity -- 3.3.2 Mitotic Spindle Orientation and Geometry -- 3.3.3 Basal Fate Determinant Localisation -- 3.3.4 Centrosomes and Other Microtubule-Based Structures -- 3.3.5 Growth and Proliferation -- 3.4 Conclusions and Perspectives -- References -- Chapter 4: Stem Cells in the Developing and Adult Nervous System -- 4.1 Stem Cell Hierarchy -- 4.2 Neural Development -- 4.3 Retinal Development -- 4.4 Adult Neurogenesis -- 4.5 Retinal Regeneration -- 4.6 Conclusions and Perspectives -- References -- Chapter 5: Epigenetic Mechanisms Regulating the Transition from Embryonic Stem Cells Towards a Differentiated Neural Progeny -- 5.1 Introduction -- 5.2 Which Epigenetic Mechanisms Are Involved in the Regulation of ESC Self-Renewal, Pluripotency and Differentiation? -- 5.3 Which Epigenetic Mechanisms Determine the Transition Between a ESC and a NSC? -- 5.4 Which Epigenetic Mechanisms Determine the Transition Between a NSC and a Differentiated Neuron or Glial Cell? -- 5.4.1 Neuronal Differentiation -- 5.4.2 Glial Differentiation -- 5.5 Conclusions and Future Perspectives -- References -- Chapter 6: Mathematical Models in Stem Cell Differentiation and Fate Predictability -- 6.1 Introduction -- 6.2 Epigenetic Models of Differentiation: Landscape, Stochasticity, and Systems Biology -- 6.2.1 Introduction and Background in Epigenetics, Stem Cells -- 6.2.2 Epigenetics, Stem Cell Differentiation, and Quasi-{u00AD}Potential Landscape -- 6.2.2.1 Models in Differentiation and Waddington's Landscape -- 6.2.2.2 Survey of Epigenetic Landscape Models -- 6.2.2.3 Stochasticity, Noise in Gene Expression, and Role in Landscape Modeling -- 6.2.2.4 Systems Biology and Stem Cell Differentiation
  • 6.2.2.5 Switching, Oscillation, and Genetic and Epigenetic Regulation -- 6.2.3 Conclusion -- 6.3 Mathematical Models in Neural Differentiation -- 6.3.1 Introduction -- 6.3.2 Neural Differentiation Models -- 6.3.3 More Details on Some Models Utilizing Signaling Pathways and Genetic Landscape -- 6.3.3.1 Role of Morphogen Gradients -- Antagonism of Shh-Wnt Gradient in Neural Tube Development -- 6.3.3.2 Notch Signaling in Neural Differentiation Models -- 6.3.4 Model of Neural Differentiation Utilizing Epigenetic Landscape -- 6.3.5 Conclusion -- 6.4 Epigenetic Models in Relation to Cancer Pathways and Cancer Stem Cells -- 6.4.1 Introduction -- 6.4.2 Epigenetic Models and Cancer -- 6.4.2.1 Epigenetic Models, Cancer Pathways, and Cancer Stem Cells -- 6.4.2.2 Pathways, Cancer Stem Cells, and Differentiation Therapy -- 6.4.2.3 Interaction of Metabolism and Epigenetics -- Role of Hypoxia in Cancer and Epigenetic Perspective -- 6.4.2.4 Role of EMT in Cancer and Metastasis, Epigenetic Perspective -- 6.5 Conclusions and Additional Questions -- References -- Chapter 7: Organ and Appendage Regeneration in the Axolotl -- 7.1 Axolotl Limb Regeneration -- 7.2 Characteristics of the Blastema -- 7.3 Nerve Dependence and Molecular Mechanisms of Limb Regeneration -- 7.4 Limb Patterning and Mammalian Appendage Regeneration -- 7.5 Nervous System Regeneration -- 7.6 Brain Regeneration -- 7.7 Spinal Cord Regeneration -- 7.8 Scarless Wound Healing -- 7.9 Extracellular Matrix Formation and Matrix Metalloproteases -- 7.10 Molecular Mechanisms of Scarless Wound Healing -- 7.11 Cardiac Regeneration -- 7.12 Early Wound Healing and the Role of the Immune System -- 7.13 Clotting Factors -- 7.14 Inflammation and the Immune System -- 7.15 Conclusion -- References -- Chapter 8: Development and Regeneration of the Vertebrate Brain -- 8.1 Introduction -- 8.2 Classification/Definitions
  • 8.2.1 Conservation of Brain Structure Across the Vertebrate Phylogeny -- 8.2.2 Organizers Secrete Morphogens that Pattern Vertebrate Embryonic Tissue -- 8.2.3 Principles of Morphogen Action -- 8.3 Principles/Mechanisms -- 8.3.1 The Neural Plate Is Established During Gastrulation -- 8.3.2 Vertical and Planar Induction in the Nervous System -- 8.3.3 Molecular Basis of Neural Induction and Patterning -- 8.3.4 Organizing Centers in the Neural Tube -- 8.3.4.1 The Isthmus Organiser -- 8.3.4.2 Zona Limitans Intrathalamica -- 8.3.4.3 Anterior Neural Ridge -- 8.3.4.4 Rostral Patterning Center -- 8.3.5 Regeneration of Brain Regions -- 8.3.5.1 Telencephalon -- 8.3.5.2 Mesencephalon -- 8.3.5.3 Cerebellum -- 8.3.6 Concluding Statement -- References -- Chapter 9: Role of Innate Immune Signaling in Nuclear Reprogramming -- 9.1 Introduction -- 9.2 Nuclear Reprogramming: Applications to Regenerative Medicine -- 9.2.1 The Transformative Effect of iPSCs in Regenerative Medicine -- 9.2.2 Nuclear Reprogramming and Transdifferentiation -- 9.3 Innate Immunity Signaling and Regeneration -- 9.4 Innate Immune Signaling and Nuclear Reprogramming to Pluripotency -- 9.5 Innate Immune Signaling and Transdifferentiation -- 9.6 What Is the Role of Innate Immune Signaling in Regenerative Processes? -- 9.7 The Goldilocks Zone for Innate Immunity in Nuclear Reprogramming -- 9.8 Perspectives and Significance -- References -- Chapter 10: Cardiac Regeneration in Zebrafish -- 10.1 Introduction -- 10.1.1 Cardiomyocytes Are Insufficiently Replaced After Injury of the Adult Mammalian Heart -- 10.1.2 Mammalian Cardiomyocyte Proliferation Can Be Experimentally Induced -- 10.2 Zebrafish Heart Regeneration - Injury Models -- 10.2.1 Ventricular Resection -- 10.2.2 Cryoinjury -- 10.2.3 Genetic Ablation -- 10.2.3.1 Cardiomyocyte Ablation -- 10.2.3.2 Epicardial Ablation -- 10.3 Functional Recovery
  • 10.4 Regeneration of Non-myocardial Tissues -- 10.4.1 Endocardium -- 10.4.2 Coronary Vasculature -- 10.4.3 Epicardium -- 10.5 Regeneration of the Myocardium -- 10.5.1 Cellular Sources of Regenerating Cardiomyocytes -- 10.5.2 Cardiomyocyte Dedifferentiation -- 10.5.3 Molecular Regulation of Cardiomyocyte Regeneration -- 10.5.3.1 Hedgehog Signaling -- 10.5.3.2 Insulin-Like Growth Factor Signaling -- 10.5.3.3 Transforming Growth Factor ß Signaling -- 10.5.3.4 Jak1/Stat3 Signaling -- 10.5.3.5 Notch Signaling -- 10.5.3.6 Neuregulin1 Signaling -- 10.5.3.7 Bone Morphogenetic Protein signaling -- 10.5.3.8 NF-mB signaling -- 10.5.3.9 p38Ü MAPK -- 10.5.3.10 Hypoxia -- 10.5.3.11 Hydrogen Peroxide -- 10.5.3.12 miRNAs -- 10.6 Conclusions -- References -- Chapter 11: Genetics and Regeneration in Vertebrates -- 11.1 Introduction -- 11.2 Comparison of Regeneration in Vertebrates -- 11.2.1 Teleost Fish: Zebrafish -- 11.2.2 Urodele Amphibians: Axolotl and Newt -- 11.2.3 Anuran Amphibians: Xenopus Frogs and Tadpoles -- 11.2.4 Squamate Reptiles: Lizards -- 11.2.5 Mammals: Mouse and Human -- 11.3 Genetic Regulation of Regeneration in Vertebrates -- 11.3.1 Wound Epithelium Formation -- 11.3.2 Modulation of Immune Response -- 11.3.3 Remodeling of the Extracellular Matrix -- 11.3.4 Patterning of the Regenerated Appendage -- 11.3.5 Activation of Wnt/Ý-catenin and FGF Signaling Pathways in Vertebrate Regeneration -- 11.4 Future Directions in Vertebrate Regeneration -- References -- Index
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319275833&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4392501'}
Edition
3rd ed.
Extent
1 online resource (378 pages)
Form of item
online
Isbn
9783319275833
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...