Coverart for item
The Resource Quantum Dot Solar Cells, edited by Jiang Wu, Zhiming M. Wang, (electronic resource)

Quantum Dot Solar Cells, edited by Jiang Wu, Zhiming M. Wang, (electronic resource)

Label
Quantum Dot Solar Cells
Title
Quantum Dot Solar Cells
Statement of responsibility
edited by Jiang Wu, Zhiming M. Wang
Creator
Contributor
Editor
Subject
Language
eng
Summary
The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of various quantum dot solar cell designs, including quantum dot intermediate band solar cells, hot electron quantum dot solar cells, quantum-dot sensitized solar cells, colloidal quantum dot solar cells, hybrid polymer-quantum dot solar cells, and MEG quantum dot solar cells. Both theoretical and experimental approaches are described. Quantum Dot Solar Cells helps to connect the fundamental laws of physics and the chemistry of materials with advances in device design and performance. The book can be recommended for a broad audience of chemists, electrical engineers, and materials scientists, and is suitable for use in courses on materials and device design for advanced and future optoelectronics. Features comprehensive coverage of novel technologies for quantum dot solar cells Written by leading experts in the corresponding research areas Supplies the keys to understanding the latest technologies for third-generation solar cells Provides a foundation for future research in materials and optoelectronics for energy applications
Member of
Is part of
Image bit depth
0
Literary form
non fiction
Series statement
Lecture Notes in Nanoscale Science and Technology,
Series volume
15
Quantum Dot Solar Cells, edited by Jiang Wu, Zhiming M. Wang, (electronic resource)
Label
Quantum Dot Solar Cells, edited by Jiang Wu, Zhiming M. Wang, (electronic resource)
Link
http://libproxy.rpi.edu/login?url=http://dx.doi.org/10.1007/978-1-4614-8148-5
Publication
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Antecedent source
mixed
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
not applicable
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Preface -- Chapter 1: Recent Progress in Colloidal Quantum Dot Sensitized Solar Cells -- Chapter 2: Hierarchically Nanostructured Photoelectrodes for Quantum-Dot-Sensitized Solar Cells -- Chapter 3: Hybrid Optoelectronic Devices with Colloidal Quantum Dots -- Chapter 4: Control of photoinduced charge transfer in semiconducting quantum dot-based hybrids -- Chapter 5: Theory of Quantum Dot Arrays for Solar Cell Devices -- Chapter 6: Material Selection for the Quantum Dot Intermediate Band Solar Cell -- Chapter 7: AlGaInAs quantum dots for intermediate band formation in solar cell devices -- Chapter 8: Requisites for highly efficient hot-carrier solar cells -- Chapter 9: Increasing Efficiency with Multiple Exciton Generation -- Chapter 10: Graphene Quantum dot based organic solar cells -- Chapter 11: Graphene and Quantum Dot Nanocomposites for Photovoltaic Devices -- Chapter 12: The Dynamics of Multiple Exciton Generation in Semiconductor Quantum Dots -- Chapter 13: Light-induced charge carrier dynamics at nanostructured interfaces investigated by ultrafast electron diffractive photovoltammetry -- Chapter 14: Photonics and plasmonics for enhanced photovoltaic performance -- Index
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9781461481485&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b3552023'}
Extent
XIV, 387 p. 220 illus., 173 illus. in color.
File format
multiple file formats
Form of item
electronic
Isbn
9781461481485
Level of compression
uncompressed
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
online resource.
Quality assurance targets
absent
Reformatting quality
access
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...