Coverart for item
The Resource Phytoremediation Potential of Bioenergy Plants

Phytoremediation Potential of Bioenergy Plants

Label
Phytoremediation Potential of Bioenergy Plants
Title
Phytoremediation Potential of Bioenergy Plants
Creator
Contributor
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Phytoremediation Potential of Bioenergy Plants
Label
Phytoremediation Potential of Bioenergy Plants
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4833619
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Dedication -- Foreword -- Preface -- Acknowledgement -- Contents -- Contributors -- About the Editors -- 1: Phytoremediation: A Multidimensional and Ecologically Viable Practice for the Cleanup of Environmental Contaminants -- 1.1 Introduction -- 1.1.1 Contaminants: Sources, Types and Effects -- 1.1.2 Heavy Metals -- 1.1.3 Organic Pollutants -- 1.1.4 Radioactive Contaminants -- 1.2 Contaminant Remediation Techniques -- 1.3 Phytoremediation: A Successful and Environment-{u00AD}Friendly Approach -- 1.3.1 Types of Phytoremediation -- 1.3.1.1 Phytoextraction -- 1.3.1.2 Phytostabilization -- 1.3.1.3 Phytofiltration -- 1.3.1.4 Phytovolatilization -- 1.3.2 Mechanism of Phytoremediation -- 1.3.2.1 Factors That Affect Uptake Mechanisms -- 1.3.2.1.1 Plant Species -- 1.3.2.1.2 Properties of Growing Medium -- 1.3.2.1.3 Root Zone -- 1.3.2.1.4 Uptake Mechanism by Vegetative Parts -- 1.3.2.1.5 Chelating Agents -- 1.3.3 Indices Used for Assessment of Phytoremediation Potential -- 1.3.4 Different Aspects of Phytoremediation -- 1.3.4.1 Application of Edible Crops -- 1.3.4.2 Application of Weeds -- 1.3.4.3 Application of Trees -- 1.3.4.4 Application of Bioenergy Crops -- 1.3.4.5 Aromatic Plants Used in Phytoremediation -- 1.3.4.6 Plants as Hyperaccumulators -- 1.3.5 Application of Chemical and Biological Amendments to Enhance Phytoremediation -- 1.3.6 Role of Bacteria in Enhancement of Phytoremediation Potential of Plants -- 1.3.7 Role of Fungi in Enhancement of Phytoremediation Potential of Plants -- 1.3.8 Technological Interventions in Plants Used for Phytoremediation -- 1.3.8.1 Transgenic Plants and Phytoremediation -- 1.3.8.2 Role of Electrokinesis for Enhanced Phytoremediation -- 1.3.9 Multitasking Approach of Phytoremediation -- 1.3.10 Economic Feasibility of Phytoremediation Over Conventional Methods
  • 1.3.11 Constraints of Phytoremediation -- 1.4 Conclusions -- References -- 2: Bioenergy: A Sustainable Approach for Cleaner Environment -- 2.1 Bioenergy -- 2.2 Bioenergy Forms -- 2.2.1 Combustion: Heat and Power -- 2.2.2 Gaseous Energy Forms -- 2.2.3 Liquid Biofuels -- 2.3 Plant-Based Feedstocks for Bioenergy -- 2.3.1 Oil Crops -- 2.3.2 Woody Feedstock -- 2.3.3 Energy Crops -- 2.4 Microorganisms for Bioenergy -- 2.4.1 Microalgae -- 2.4.2 Bacteria -- 2.4.3 Fungus -- 2.5 Bioenergy from Waste -- 2.5.1 Agro-industrial Waste Biomass -- 2.5.2 Sewage Sludge -- 2.5.3 Animal Waste -- 2.6 Environmental and Socio-economic Significance -- 2.7 Coupling Phytoremediation with Bioenergy: An Integrated Biorefinery Approach -- 2.8 Conclusion -- References -- 3: Phytoremediation of Heavy Metal-{u00AD}Contaminated Soil Using Bioenergy Crops -- 3.1 Introduction -- 3.2 Bioenergy Crops -- 3.3 Heavy Metals and Their Remediation Using Bioenergy Crops -- 3.3.1 Willow -- 3.3.2 Poplar -- 3.3.3 Jatropha -- 3.3.4 Castor -- 3.3.5 Grasses -- 3.4 Strategies to Increase Phytoremediation Potential of Bioenergy Crops -- 3.4.1 Metal Solubilizing Agent -- 3.4.2 Symbiotic Endophytic Microorganisms -- 3.4.3 Genetic Engineering -- 3.5 Concluding Remarks and Future Prospects -- References -- 4: Phytoremediation of Soil Contaminants by the Biodiesel Plant Jatropha curcas -- 4.1 Introduction -- 4.2 Soil Contaminants -- 4.2.1 Inorganic Poisonous Mixtures -- 4.2.2 Organic Waste -- 4.2.3 Sewage and Sewage Sludge -- 4.2.4 Heavy Metal Contamination -- 4.2.5 Organic Pesticides -- 4.3 Reasons for Soil Contamination -- 4.3.1 Causes of Soil Contamination -- 4.3.1.1 Indiscriminate Utilization of Fertilizers -- 4.3.1.2 Indiscriminate Utilization of Herbicides, Pesticides, and Insecticides -- 4.3.1.3 Discarding of Large Amounts of Solid Waste
  • 4.3.1.4 Deforestation and Erosion of Soil -- 4.3.1.5 Pollution Due to Urbanization -- 4.3.1.6 Contamination of Subsurface Soil -- 4.4 Phytoremediation Techniques -- 4.4.1 Rhizoremediation and Microbe-Plant Interactions in Phytoremediation -- 4.4.2 Uses of Phytoremediation in Treatment Wetlands -- 4.5 Jatropha curcas -- 4.5.1 History and Domestication of Jatropha curcas -- 4.5.2 Cultivation and Distribution of Jatropha curcas -- 4.5.2.1 Climate -- 4.5.2.2 Soils -- 4.5.2.3 Propagation and Crop Establishment -- 4.5.2.4 Vegetative Propagation Using Cuttings -- 4.5.2.5 Propagation from Seed -- 4.5.2.6 Planting -- 4.6 Uses of Jatropha curcas -- 4.6.1 Potential Phytoremediators -- 4.6.2 Soil Carbon Sequestration -- 4.6.3 Reduction of Environmental Pollutants -- 4.6.4 Soil Erosion Control -- 4.6.5 Utilizing Marginal Land for Jatropha Agro-forestry -- 4.6.6 Medicinal Value -- 4.7 Remediation of Soil Contaminants by Jatropha curcas -- 4.7.1 Heavy Metals -- 4.7.2 Organic Contaminants (Petroleum, Spent Lubricating Oil, Trinitrotoluene, Pesticides) -- 4.7.3 Radionuclides -- 4.8 Microbial-Assisted Remediation of Soil Contaminants by Jatropha curcas -- 4.9 Mechanisms of Soil Contaminant Remediation by Jatropha curcas -- 4.10 Advantages of Using Jatropha curcas in Soil Remediation -- 4.11 Constraints Associated with Use of Jatropha curcas in Soil Remediation -- 4.12 Conclusion -- References -- 5: Ricinus communis: An Ecological Engineer and a Biofuel Resource -- 5.1 Introduction -- 5.2 Soil Metal Contamination and Conventional Treatment Techniques -- 5.3 Phytoremediation: An Emerging, Economical, and Eco-{u00AD}friendly Technique for Environmental Cleanup -- 5.4 Ricinus communis: A Multipurpose Plant -- 5.4.1 Geographical Distribution of Ricinus communis -- 5.4.2 Ricinus communis: An Ecological Engineer
  • 5.4.2.1 Heavy Metal Extractor -- 5.4.2.2 Mechanism of Phytoextraction -- 5.4.2.3 The Phytoextraction of the Heavy Metals Depends on the Following Factors -- 5.4.2.3.1 Tolerance to Higher Concentrations of Metals -- 5.4.2.3.2 Accumulation Ability -- 5.4.2.3.3 Heavy Metal Concentration in the Medium (Soil) -- 5.4.2.3.4 Rate of Metal Uptake by the Roots and Translocation -- 5.4.2.3.5 Biomass Production -- 5.4.2.3.6 Metabolic Activity of the Plants -- 5.4.2.3.7 Physicochemical Properties of Medium -- 5.4.2.3.8 Other Interactions -- 5.4.2.4 Biotransformation of Polyaromatic Hydrocarbons -- 5.4.2.5 Sodic Soil and Degraded Land Reclamation -- 5.4.2.6 Radionuclide Accumulator -- 5.4.2.7 Potential Phytominer -- 5.5 Ricinus communis: Potential Bioenergy Plant -- 5.6 Conclusion -- References -- 6: Bioenergy and Phytoremediation Potential of Millettia pinnata -- 6.1 Introduction -- 6.2 Introduction to Millettia pinnata -- 6.3 Bioenergy Potential of M. pinnata -- 6.4 Phytoremediation Potential of M. pinnata -- 6.5 Discussion -- 6.6 Conclusion -- References -- 7: Phytoremediation Potential of Leucaena leucocephala (Lam.) de Wit. for Heavy Metal-Polluted and Heavy Metal-Degraded Environments -- 7.1 Brief Biology and Ecology of Leucaena leucocephala -- 7.2 Global Mine Waste Disposal and Remediation Challenges -- 7.3 What Is Phytoremediation? -- 7.4 Criteria for Selection of Bioenergy Plants for Phytoremediation -- 7.5 Suitability of Leucaena leucocephala for Phytoremediation -- 7.5.1 Enhancement of Secondary Succession by Native Species on Heavy Metal-Polluted Sites -- 7.5.2 Growth Rate and Phytomass Accumulation -- 7.5.3 Heavy Metal Uptake and Hyperaccumulation -- 7.5.4 Susceptibility to Pathogens and Insect Folivores -- 7.5.5 Reproduction Potential -- 7.5.6 Rooting Pattern and Volume -- 7.5.7 Nodulation and Nutrient Replenishment
  • 7.5.8 Restoration of Microbial Activity -- 7.5.9 Palatability to Ruminants and Invasiveness -- 7.6 Conclusions and Recommendations -- References -- 8: Phytoremediation Potential of Industrially Important and  Biofuel Plants: Azadirachta indica and Acacia nilotica -- 8.1 Introduction -- 8.2 Problems Related to Soil -- 8.3 Remediation Techniques -- 8.3.1 Phytoremediation: Main Mechanisms and Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis -- 8.3.1.1 Advantages -- 8.3.1.2 Limitations -- 8.4 Azadirachta indica (A. indica) and Acacia nilotica (A. nilotica) -- 8.4.1 Overview of A. indica and A. nilotica -- 8.4.1.1 A. indica (Neem) -- 8.4.1.2 Taxonomical Classification -- 8.4.1.3 Botanical Description -- 8.4.1.4 A. nilotica -- 8.4.1.5 Taxonomical Classification -- 8.4.1.6 Botanical Description -- 8.4.2 Geographical Distribution and Cultivation -- 8.4.2.1 A. indica -- 8.4.2.2 A. nilotica -- 8.4.3 Industrial Application of A. indica and A. nilotica -- 8.4.3.1 A. indica -- 8.4.3.1.1 Phytochemistry -- 8.4.3.1.2 Medicinal Use -- 8.4.3.1.3 Pharmacological Actions -- 8.4.3.1.4 Health and Personal Care Products -- 8.4.3.1.5 Therapeutic Uses -- 8.4.3.2 A. nilotica -- 8.5 Application of A. indica and A. nilotica in Soil Reclamation -- 8.5.1 Amelioration of Sodic Soil by A. indica and A. nilotica -- 8.5.2 Anticlastogenic Activity of A. indica and A. nilotica by Removing Organic Contaminants -- 8.5.3 Biosorption -- 8.5.4 Removal of Radionuclides -- 8.5.4.1 Estimation of Transfer Factor (TF) -- 8.5.4.2 Case Study -- 8.5.4.2.1 Materials -- 8.5.4.2.2 Sorption Measurement -- 8.5.4.2.3 Irradiation of Adsorbents -- 8.5.4.2.4 Results and Discussion -- 8.6 Comparative Analysis of Phytoremediation Potential and Biofuel Efficiency of A. indica and A. nilotica -- 8.6.1 Biofuel Efficiency of A. indica
  • 8.6.1.1 Case I: Biofuel Production from A. indica Seeds Using Transesterification
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9789811030840&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4387823'}
Extent
1 online resource (482 pages)
Form of item
online
Isbn
9789811030840
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Subject

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...