Coverart for item
The Resource Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting

Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting

Label
Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting
Title
Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting
Creator
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
KAIST Research Series
Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting
Label
Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=3567768
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Contents -- Part I Devices for Low Energy -- Tunneling Field-Effect Transistors for Ultra-Low-Power Application -- Abstract -- 1 Introduction -- 2 Low Power Operation and Subthreshold Swing -- 2.1 Switching and Leakage Power Consumption -- 2.2 Subthreshold Swing and Its Limit in MOSFETs -- 3 Fundamentals of Tunneling Field-Effect Transistor -- 3.1 Interband Tunneling Mechanism -- 3.2 Tunneling Field-Effect Transistor -- 3.3 Point Subthreshold Swing -- 3.4 Ambipolar Characteristics -- 4 Structure Engineering for Tunneling Field-Effect Transistors -- 4.1 Silicon Tunneling Field-Effect Transistors and Related Issues -- 4.2 Cylindrical Nanowire Channel -- 4.3 Doping Engineering -- 4.4 Tunneling Area -- 5 Bandgap Engineering for Tunneling Field-Effect Transistors -- 5.1 Impact of Bandgap on Tunneling Probability -- 5.2 Ambipolar Characteristics in Devices with a Narrow Bandgap Channel -- 5.3 Bandgap Engineering -- References -- Bulk FinFETs: Design at 14 nm Node and Key Characteristics -- Abstract -- 1 Introduction -- 2 SOI and Bulk FinFETs -- 3 Design of 14 nm Bulk FinFET -- 3.1 Effect of Local Doping (LD) Profile in the Fin Body -- 3.2 Effect of Fin Body Doping -- 3.3 Effect of Junction-to-Junction Length -- 3.4 Effect of Fin Body Width -- 4 Design of 14 nm SOI FinFET -- 4.1 Effect of Fin Body Doping -- 4.2 Effect of Junction-to-Junction Length -- 4.3 Effect of Fin Body Width -- 4.4 Comparison of ID-VGSs of Bulk and SOI FinFETs -- 5 Parasitic Resistance and Capacitance in Bulk FinFETs -- 5.1 Effect of SD Contact Resistance -- 5.2 Junction and Gate Capacitances of Bulk FinFETs -- 6 Current Fluctuation with Charge Trap and Temperature -- 6.1 Drain Current Fluctuation with Single Charge Trap -- 6.2 Device Temperature -- References -- Micro and Nanoelectromechanical Contact Switches for Logic, Memory, and Power Applications -- Abstract -- 1 Background
  • 1.1 Why Miniaturized Mechanical Switches? -- 1.2 MEMSNEMS Contact Switch Principle -- 1.3 Contact Physics -- 2 Microelectromechanical System (MEMS) Switches -- 2.1 MEMS Switch Types -- 2.2 MEMS Switch Advantages -- 2.3 Actuation Voltage -- 2.4 ReliabilityLifetime -- 2.5 Selecting Contact Material -- 2.6 Other Selected MEMS Switches -- 3 Nanoelectromechanical System (NEMS) Switches -- 3.1 NEMS Switch Advantages -- 3.2 Fabrication Methods -- 3.3 Research Flow -- 3.4 Current Issues -- 4 Logic and Memory Applications -- 4.1 Introduction -- 4.2 Logic Applications -- 4.3 Memory Applications -- 5 Power Applications -- 5.1 Introduction -- 5.2 Requirements for Power Switching -- 5.3 Research Flow -- 6 Conclusion -- References -- Part II Systems and Circuits for Low Energy -- Ultralow Power Processor Design with 3D IC Operating at SubNear-Threshold Voltages -- Abstract -- 1 Introduction -- 2 Review of Existing Works -- 3 Cell Library Design Methodology -- 3.1 Issues Related to SubNear-Threshold Designs -- 3.2 Sizing Techniques -- 3.3 Library Characterization -- 3.4 Variation Study -- 3.5 Memory Designs -- 4 Full-Chip Design and Analysis -- 4.1 Design Flow -- 4.2 Timing and Power Comparisons -- 4.3 3D Impact Versus Type of Design -- 4.4 Full-Chip Variation Study -- 4.5 Thermal Analysis -- 4.6 IR-Drop Analysis -- 5 Power Benefits in Many-Core Designs -- 5.1 IO Driver Design -- 5.2 Power Saving in Many-Core Sub-Vth 3D Designs -- 6 Design Lessons and Guidelines -- 7 Conclusions -- References -- Energy Harvesting from the Human Body and Powering up Implant Devices -- Abstract -- 1 Introduction -- 2 Wearable Devices -- 2.1 Foot -- 2.1.1 Heel-Strike Generators -- 2.1.2 Sole CompressionDecompression Generators -- 2.1.3 Foot Motion Generators -- 2.2 Knee -- 2.3 Torso -- 2.4 Arm -- 2.5 Breathing -- 2.6 Body Heat -- 3 Implant Devices -- 3.1 Knee -- 3.2 Body Movement
  • 3.3 Heart -- 3.4 Artery -- 3.5 Muscle -- 3.6 Body Heat -- 3.7 Glucose Fuel Cell -- 3.8 Inner Ear -- 3.9 Solar Energy -- 4 Wireless Power Transmission to Implant Devices -- 4.1 Inductive Link -- 4.2 RF Transmission -- 4.3 Infrared -- 4.4 Ultrasonic -- 5 Summary -- 5.1 Energy Harvesting with Wearable Devices -- 5.2 Powering Implant Devices -- 5.3 Final Remarks -- References -- Reconfigurable Photovoltaic Array Systems for Adaptive and Fault-Tolerant Energy Harvesting -- Abstract -- 1 Introduction -- 1.1 Structure of PV Energy Harvesting Systems -- 1.2 Design Consideration and Runtime Management -- 2 Efficiency of Photovoltaic Cell Energy Harvesting Systems -- 2.1 PV Cell Modeling -- 2.2 Power Converter (Charger) Power Model -- 2.3 Mitigating the Output Variation of PV Modules -- 2.3.1 Maximum Power Point Tracking -- 2.3.2 Maximum Power Transfer Tracking -- 2.4 Partial Shading and PV Cell Faults -- 3 Reconfigurable Photovoltaic Cell Array -- 3.1 Reconfigurable Switch Network Architecture -- 3.2 Balanced Configurations -- 3.3 Imbalanced Reconfiguration to Combat Partial Shading -- 3.4 Fault Tolerance -- 3.4.1 Reconfiguration for Fault Detection and Fault Bypassing -- 3.4.2 Fault Detection Algorithm -- 3.4.3 Fault Bypassing Algorithm -- 4 Storage- and Converter-Less Energy Harvesting -- 4.1 Principle of Operation -- 4.2 Storage- and Converter-Less MPPT -- 4.3 Overhead Analysis -- 5 Conclusions -- References -- Low-Power Circuit Techniques for Efficient Energy Harvesting -- Abstract -- 1 Introduction -- 2 Thermoelectric Energy Harvesting Circuits -- 2.1 Blocking Oscillator -- 2.2 Voltage-Doubling Rectifier -- 2.3 Switched Capacitor Storage -- 3 Piezoelectric Energy Harvesting Circuits -- 3.1 Maximum Energy Transfer Condition for Full-Bridge Rectifier-Based Energy Harvester -- 3.2 Bias-Flip Rectifier and Switched Capacitor Array -- 4 Summary -- References
  • Part III Materials for Low Energy -- Preparation of Porous Graphene-Based Nanomaterials for Electrochemical Energy Storage Devices -- Abstract -- 1 Introduction -- 2 Strategies to Buildup Porous Graphene -- 2.1 Generation of Defective Pores into the Graphene Sheets -- 2.2 Out-of-Plane Generation of 3D Graphene-Based Porous Superstructures -- 2.3 Other Methods -- 3 Applications in Lithium-Ion Rechargeable Batteries -- 3.1 Porous Graphene-Based Anode Materials -- 3.2 Porous Graphene-Based Cathode Materials -- 4 Applications in Supercapacitors -- 4.1 Activation of Graphene for Supercapacitors -- 4.2 3D Graphene-Based Porous Materials for Supercapacitors -- 4.3 Flexible Supercapacitors Using 3D Graphene-Based Porous Materials -- 5 Future Perspectives -- References -- Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related Applications -- Abstract -- 1 Introduction -- 2 Electronic Structure and Synthesis of 2D Materials -- 2.1 Electronic Structure -- 2.2 Synthesis Methods -- 2.2.1 Micromechanical Exfoliation -- 2.2.2 Chemical Vapor Deposition -- 2.2.3 Liquid-Based Exfoliation -- Graphene Nanosheets -- 2D-TMD Nanosheets -- 3 Energy Harvesting and Energy Conversion Applications -- 3.1 Solar Cells -- 3.1.1 Graphene Nanosheets for Solar Cells -- 3.1.2 Nanosheets of 2D-TMDs for Solar Cells -- 3.2 Fuel Cells -- 3.2.1 Graphene Nanosheets for Fuel Cells -- 3.2.2 Nanosheets of 2D-TMDs for Fuel Cells -- 4 Energy Storage Applications -- 4.1 Lithium-Ion Batteries -- 4.1.1 Graphene Nanosheets for LIBs -- 4.1.2 Nanosheets of 2D-TMDs for LIBs -- 4.2 Supercapacitors -- 4.2.1 Graphene Nanosheets for Supercapacitors -- 4.2.2 Nanosheets of 2D-TMDs for Supercapacitors -- 5 Summary -- References
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9789401799904&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b3762607'}
Extent
1 online resource (292 pages)
Form of item
online
Isbn
9789401799904
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...