Coverart for item
The Resource Microforming technology : theory, simulation and practice, Zhengyi Jiang, Jingwei Zhao, Haibo Xie

Microforming technology : theory, simulation and practice, Zhengyi Jiang, Jingwei Zhao, Haibo Xie

Label
Microforming technology : theory, simulation and practice
Title
Microforming technology
Title remainder
theory, simulation and practice
Statement of responsibility
Zhengyi Jiang, Jingwei Zhao, Haibo Xie
Creator
Contributor
Author
Subject
Language
eng
Summary
Microforming Technology: Theory, Simulation and Practice addresses all aspects of micromanufacturing technology, presenting detailed technical information and the latest research developments. The book covers fundamentals, theory, simulation models, equipment and tools design, practical micromanufacturing procedures, and micromanufacturing-related supporting systems, such as laser heating system, hydraulic system and quality evaluation systems. Newly developed technology, including micro wedge rolling, micro flexible rolling and micro hydromechanical deep drawing, as well as traditional methods, such as micro deep drawing, micro bending and micro ultrathin strip rolling, are discussed. This will be a highly valuable resource for those involved in the use, study and design of micro products and micromanufacturing technologies, including engineers, scientists, academics and graduate students
Cataloging source
N$T
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Microforming technology : theory, simulation and practice, Zhengyi Jiang, Jingwei Zhao, Haibo Xie
Label
Microforming technology : theory, simulation and practice, Zhengyi Jiang, Jingwei Zhao, Haibo Xie
Link
http://libproxy.rpi.edu/login?url=http://www.sciencedirect.com/science/book/9780128112120
Publication
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Front Cover; Microforming Technology; Copyright Page; Contents; Foreword; Preface; I. Introductory Overview; 1 Fundamentals of Microforming; 1.1 Microforming Concept; 1.2 Microforming System; 1.3 Microforming Methods and Processes; 1.3.1 Micro Rolling; 1.3.1.1 Micro Cross Wedge Rolling; 1.3.1.2 Micro Flexible Rolling; 1.3.1.3 Micro Ultrathin Strip Rolling; 1.3.2 Micro Deep Drawing; 1.3.3 Micro Hydromechanical Deep Drawing; 1.3.4 Micro Bending; 1.3.5 Micro Compression; 1.3.6 Other Microforming Methods; References; 2 Size Effects in Microforming; 2.1 Categories of Size Effects
  • 2.2 Problems Caused by Size Effects2.2.1 Size Effects on Mechanical Behavior; 2.2.2 Size Effects on Tribology; 2.2.3 Size Effects on Scatter of Material Behavior; 2.3 Strategies for Control of Size Effects; 2.3.1 Microforming at Elevated Temperatures; 2.3.1.1 Warm Forming; 2.3.1.2 Characteristics of Microforming at Elevated Temperatures; 2.3.1.3 Heating Methods in Microforming; 2.3.2 Microstructural Refinement; References; II. Theory of Microforming; 3 Scaling Laws; 3.1 Introduction; 3.2 Scaling in Geometry; 3.2.1 Scaling of Length and Area in Two-Dimensional Geometry
  • 3.2.2 Scaling of Surface Area and Volume in Three-Dimensional Geometry3.3 Scaling in Dynamics; 3.3.1 Scaling in Dynamic Force; 3.3.2 Scaling in Work and Power; 3.3.3 Scaling in Energy; 3.4 Scaling in Mechanics; 3.4.1 Scaling in Bending Moment; 3.4.2 Scaling in Deflection and Stiffness; 3.5 Scaling in Hydrodynamics; 3.6 Scaling in Heat Transfer; 3.6.1 Scaling in Heat Conduction; 3.6.2 Scaling in Heat Convection; 3.6.3 Scaling in Heat Radiation; 3.7 Scaling in Electromagnetic and Electrostatic Forces; 3.7.1 Scaling in Electromagnetic Force; 3.7.2 Scaling in Electrostatic Force
  • 3.8 Scaling in Electricity4 Strain Gradient Plasticity Theory; 4.1 Introduction; 4.2 Couple Stress Theory; 4.3 Phenomenological Strain Gradient Plasticity Theory; 4.4 Mechanism-Based Strain Gradient Plasticity Theory; 4.5 Conventional Theory of Mechanism-Based Strain Gradient Plasticity; References; 5 Crystal Plasticity Theory; 5.1 Introduction; 5.2 Crystal Plasticity Theory; 5.2.1 Geometrics and Kinematics of Crystal Plastic Deformation; 5.2.2 Rate Independent Crystal Plasticity Constitutive Equation; 5.2.3 Rate Dependent Crystal Plasticity Constitutive Equation
  • 5.3 Simplification of Rate Dependent Crystal Plasticity Theory5.3.1 Decomposition of the Crystal Plastic Deformation Gradient; 5.3.2 Elastic Constitutive Equation; 5.3.3 Flow Rule of Plastic Deformation; 5.3.4 Equation of Kinematics; 5.3.5 Hardening Law; 5.3.6 Models of Polycrystal Homogenization; 5.3.6.1 Taylor Averaging Procedure; 5.3.6.2 Finite Element Averaging Procedure; 5.4 Numerical Integration of Rate Dependent Crystal Plasticity Theory; 5.4.1 Total Lagrangian Formulation; 5.4.2 Fully Implicit Integration Procedure; 5.5 Calculation of Grain Orientation
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9780128112137&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4171391'}
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9780128112137
Lccn
2016961036
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...