The Resource Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim
Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim
- Summary
- Metal Matrix Composites (MMC's) have found an increased use in various industries duetotheir special mechanical and physical properties. They are a composite material with at least two constituent parts, one being a metal and are made by dispersing a reinforcing material into a metal matrix. The markets are: telecommunications, automotive, power semiconductor, opto-electronics, military and aerospace, heavy transportation, space systems and satellites, medical, and industrial lighting. Applications within these markets include microwave, micro-electronic packaging, laser diode, HB-LED's, and advanced radar
- Language
- eng
- Extent
- 1 online resource (216 pages).
- Note
- 5.4.1 S/N Ratio for micro-hardness of prepared Al/15 wt.% SiC-MMC
- Contents
-
- Preface; Contents; List of contributing authors; 1 Metal matrix composites for thermal management; 1.1 Introduction; 1.2 Composite materials for thermal management; 1.2.1 Liquid infiltration; 1.2.2 Powder metallurgy; 1.3 Design and modeling of metal matrix composites for electronics; 1.3.1 Volume fraction of ceramic phase; 1.3.2 Thermal conductivity; 1.3.3 Coefficient of thermal expansion; 1.4 Families of advanced metal matrix composite materials for electronics; 1.4.1 SiC-based composites; 1.4.2 Carbon-based composites; 1.4.3 Diamond-based composites
- 1.5 The future of metal matrix composites in electronicsReferences; 2 Recent research and developments on the mechanical behavior of CNT-reinforced metal matrix composites; 2.1 Introduction; 2.2 CNT-Al composites; 2.3 CNT-Co composites; 2.4 CNT-Cu composites; 2.5 CNT-Fe composites; 2.6 CNT-Mg composites; 2.7 CNT-Ni composites; 2.8 CNT-Ti composites; 2.9 Concluding remarks; References; 3 Novel preparation and mechanical properties of in situ synthesized (TiB+La2O3)/TiNbTaZr composites; 3.1 Introduction; 3.1.1 The application of rare earth elements in Î2 titanium alloys
- 3.1.2 The influence of rare earth elements in titanium alloys3.1.3 Biosafety of rare earth elements; 3.2 Materials preparation and experimental procedures; 3.2.1 Materials preparation; 3.2.2 Experimental procedures; 3.3 Results and discussions; 3.3.1 Phase analysis; 3.3.2 Thermodynamic analysis; 3.3.3 Microstructure analysis; 3.3.4 Microstructure of reinforcements; 3.3.5 Analysis of the solidification mechanism; 3.3.6 Superelasticity; 3.3.7 In situ characterization of microstructure; 3.3.8 Mechanical properties; 3.4 Conclusions; References
- 4 Microstructure formation of particle-reinforced metal matrix composite coatings produced by thermal spraying4.1 Particle-reinforced MMC coatings formed ex situ by thermal spraying of powder mixtures and composite particles; 4.2 MMC coatings with reinforcing particles formed in situ during thermal spraying; 4.3 Design of particle-reinforced MMC coatings using flexible variation of spraying parameters in computer-controlled detonation spraying; 4.4 Post-spray treatment of MMC coatings; References; 5 Fabrication of Al-metal matrix composites by liquid stirring technique; 5.1 Introduction
- 5.2 Fabrication of Aluminium metal matrix composites5.2.1 Fabrication of the stirring arrangement; 5.2.2 Mold-making and preparation of the mold cavity; 5.2.3 Estimation of raw materials for Al/5, 10, 15 wt.% reinforced MMC casting; 5.2.4 Experimental procedure; 5.3 Physical, chemical and mechanical properties of stir cast samples; 5.3.1 Physical property of stir cast samples; 5.3.2 Mechanical properties of stir cast samples; 5.3.3 Analysis of the reinforced weight fraction; 5.3.4 Microstructural characterization; 5.4 Optimization of stir casting parameters for Al/15 wt.% SiC-MMC
- Isbn
- 9783110315448
- Label
- Metal matrix composites : materials, manufacturing and engineering
- Title
- Metal matrix composites
- Title remainder
- materials, manufacturing and engineering
- Statement of responsibility
- edited by J. Paulo Davim
- Language
- eng
- Summary
- Metal Matrix Composites (MMC's) have found an increased use in various industries duetotheir special mechanical and physical properties. They are a composite material with at least two constituent parts, one being a metal and are made by dispersing a reinforcing material into a metal matrix. The markets are: telecommunications, automotive, power semiconductor, opto-electronics, military and aerospace, heavy transportation, space systems and satellites, medical, and industrial lighting. Applications within these markets include microwave, micro-electronic packaging, laser diode, HB-LED's, and advanced radar
- Cataloging source
- EBLCP
- Index
- index present
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Advanced Composites
- Series volume
- v. 3
- Label
- Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim
- Link
- http://libproxy.rpi.edu/login?url=http://app.knovel.com/hotlink/toc/id:kpMMCMME01/metal-matrix-composites
- Note
- 5.4.1 S/N Ratio for micro-hardness of prepared Al/15 wt.% SiC-MMC
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Preface; Contents; List of contributing authors; 1 Metal matrix composites for thermal management; 1.1 Introduction; 1.2 Composite materials for thermal management; 1.2.1 Liquid infiltration; 1.2.2 Powder metallurgy; 1.3 Design and modeling of metal matrix composites for electronics; 1.3.1 Volume fraction of ceramic phase; 1.3.2 Thermal conductivity; 1.3.3 Coefficient of thermal expansion; 1.4 Families of advanced metal matrix composite materials for electronics; 1.4.1 SiC-based composites; 1.4.2 Carbon-based composites; 1.4.3 Diamond-based composites
- 1.5 The future of metal matrix composites in electronicsReferences; 2 Recent research and developments on the mechanical behavior of CNT-reinforced metal matrix composites; 2.1 Introduction; 2.2 CNT-Al composites; 2.3 CNT-Co composites; 2.4 CNT-Cu composites; 2.5 CNT-Fe composites; 2.6 CNT-Mg composites; 2.7 CNT-Ni composites; 2.8 CNT-Ti composites; 2.9 Concluding remarks; References; 3 Novel preparation and mechanical properties of in situ synthesized (TiB+La2O3)/TiNbTaZr composites; 3.1 Introduction; 3.1.1 The application of rare earth elements in Î2 titanium alloys
- 3.1.2 The influence of rare earth elements in titanium alloys3.1.3 Biosafety of rare earth elements; 3.2 Materials preparation and experimental procedures; 3.2.1 Materials preparation; 3.2.2 Experimental procedures; 3.3 Results and discussions; 3.3.1 Phase analysis; 3.3.2 Thermodynamic analysis; 3.3.3 Microstructure analysis; 3.3.4 Microstructure of reinforcements; 3.3.5 Analysis of the solidification mechanism; 3.3.6 Superelasticity; 3.3.7 In situ characterization of microstructure; 3.3.8 Mechanical properties; 3.4 Conclusions; References
- 4 Microstructure formation of particle-reinforced metal matrix composite coatings produced by thermal spraying4.1 Particle-reinforced MMC coatings formed ex situ by thermal spraying of powder mixtures and composite particles; 4.2 MMC coatings with reinforcing particles formed in situ during thermal spraying; 4.3 Design of particle-reinforced MMC coatings using flexible variation of spraying parameters in computer-controlled detonation spraying; 4.4 Post-spray treatment of MMC coatings; References; 5 Fabrication of Al-metal matrix composites by liquid stirring technique; 5.1 Introduction
- 5.2 Fabrication of Aluminium metal matrix composites5.2.1 Fabrication of the stirring arrangement; 5.2.2 Mold-making and preparation of the mold cavity; 5.2.3 Estimation of raw materials for Al/5, 10, 15 wt.% reinforced MMC casting; 5.2.4 Experimental procedure; 5.3 Physical, chemical and mechanical properties of stir cast samples; 5.3.1 Physical property of stir cast samples; 5.3.2 Mechanical properties of stir cast samples; 5.3.3 Analysis of the reinforced weight fraction; 5.3.4 Microstructural characterization; 5.4 Optimization of stir casting parameters for Al/15 wt.% SiC-MMC
- http://library.link/vocab/cover_art
- https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783110315448&userID=ebsco-test&password=ebsco-test
- Dimensions
- unknown
- http://library.link/vocab/discovery_link
- {'f': 'http://opac.lib.rpi.edu/record=b3764021'}
- Extent
- 1 online resource (216 pages).
- Form of item
- online
- Isbn
- 9783110315448
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
- c
- Specific material designation
- remote
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Metal-matrix-composites--materials/CjiR8_TTqtc/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Metal-matrix-composites--materials/CjiR8_TTqtc/">Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.lib.rpi.edu/portal/Metal-matrix-composites--materials/CjiR8_TTqtc/" typeof="WorkExample http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.lib.rpi.edu/portal/Metal-matrix-composites--materials/CjiR8_TTqtc/">Metal matrix composites : materials, manufacturing and engineering, edited by J. Paulo Davim</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.lib.rpi.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.lib.rpi.edu/">Rensselaer Libraries</a></span></span></span></span></div>