Coverart for item
The Resource Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications, Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude

Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications, Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude

Label
Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications
Title
Max Plus at work
Title remainder
modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications
Statement of responsibility
Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude
Creator
Contributor
Author
Subject
Genre
Language
eng
Summary
Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu
Member of
Cataloging source
E7B
Illustrations
illustrations
Index
index present
Language note
In English
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Princeton Series in Applied Mathematics
Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications, Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude
Label
Max Plus at work : modeling and analysis of synchronized systems : a course on Max-Plus algebra and its applications, Bernd Heidergott, Geert Jan Olsder, Jacob van der Woude
Link
http://www.jstor.org/stable/10.2307/j.ctt7zv8k3
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover; Title; Copyright; Contents; Preface; Chapter 0. Prolegomenon; 0.1 Introductory Example; 0.2 On the Notation; 0.3 On Eigenvalues and Eigenvectors; 0.4 Some Modeling Issues; 0.5 Counter and Dater Descriptions; 0.6 Exercises; 0.7 Notes; PART I. MAX-PLUS ALGEBRA; Chapter 1. Max-Plus Algebra; 1.1 Basic Concepts and Definitions; 1.2 Vectors and Matrices; 1.3 A First Max-Plus Model; 1.4 The Projective Space; 1.5 Exercises; 1.6 Notes; Chapter 2. Spectral Theory; 2.1 Matrices and Graphs; 2.2 Eigenvalues and Eigenvectors; 2.3 Solving Linear Equations; 2.4 Exercises; 2.5 Notes
  • Chapter 3. Periodic Behavior and the Cycle-Time Vector3.1 Cyclicity and Transient Time; 3.2 The Cycle-Time Vector: Preliminary Results; 3.3 The Cycle-Time Vector: General Results; 3.4 A Sunflower Bouquet; 3.5 Exercises; 3.6 Notes ; Chapter 4. Asymptotic Qualitative Behavior; 4.1 Periodic Regimes; 4.2 Characterization of the Eigenspace; 4.3 Primitive Matrices; 4.4 Limits in the Projective Space; 4.5 Higher-Order Recurrence Relations; 4.6 Exercises; 4.7 Notes; Chapter 5. Numerical Procedures for Eigenvalues of Irreducible Matrices; 5.1 Karp''s Algorithm; 5.2 The Power Algorithm; 5.3 Exercises
  • 5.4 NotesChapter 6. A Numerical Procedure for Eigenvalues of Reducible Matrices; 6.1 Howard''s Algorithm; 6.2 Examples; 6.3 Howard''s Algorithm for Higher-Order Models; 6.4 Exercises; 6.5 Notes; PART II. TOOLS AND APPLICATIONS; Chapter 7. Petri Nets; 7.1 Petri Nets and Event Graphs; 7.2 The Autonomous Case; 7.3 The Nonautonomous Case; 7.4 Exercises; 7.5 Notes; Chapter 8. The Dutch Railway System Captured in a Max-Plus Model; 8.1 The Line System; 8.2 Construction of the Timed Event Graph; 8.3 State Space Description; 8.4 Application of Howard''s Algorithm; 8.5 Exercises; 8.6 Notes
  • Chapter 9. Delays, Stability Measures, and Results for the Whole Network9.1 Propagation of Delays; 9.2 Results for the Whole Dutch Intercity Network; 9.3 Other Modeling Issues ; 9.4 Exercises; 9.5 Notes; Chapter 10. Capacity Assessment; 10.1 Capacity Assessment with Different Types of Trains; 10.2 Capacity Assessment for a Series of Tunnels; 10.3 Exercises; 10.4 Notes; PART III. EXTENSIONS; Chapter 11. Stochastic Max-Plus Systems; 11.1 Basic Definitions and Examples; 11.2 The Subadditive Ergodic Theorem; 11.3 Matrices with Fixed Support; 11.4 Beyond Fixed Support; 11.5 Exercises; 11.6 Notes
  • Chapter 12. Min-Max-Plus Systems and Beyond12.1 Min-Max-Plus Systems; 12.2 Links to Other Mathematical Areas; 12.3 Exercises; 12.4 Notes; Chapter 13. Continuous and Synchronized Flows on Networks; 13.1 Dater and Counter Descriptions; 13.2 Continuous Flows without Capacity Constraints; 13.3 Continuous Flows with Capacity Constraints; 13.4 Exercises; 13.5 Notes; Bibliography; List of Symbols; Index
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9781400865239&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4332604'}
Extent
1 online resource (226 pages)
Form of item
online
Isbn
9781400865239
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations.
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...