Coverart for item
The Resource Mathematical techniques for engineers and scientists, Larry C. Andrews, Ronald L. Phillips, (electronic resource)

Mathematical techniques for engineers and scientists, Larry C. Andrews, Ronald L. Phillips, (electronic resource)

Label
Mathematical techniques for engineers and scientists
Title
Mathematical techniques for engineers and scientists
Statement of responsibility
Larry C. Andrews, Ronald L. Phillips
Creator
Contributor
Subject
Language
eng
Summary
As technology continues to move ahead, modern engineers and scientists are frequently faced with difficult mathematical problems that require an ever greater understanding of advanced concepts. Designed as a self-study text for practicing engineers and scientists, as well as a useful reference, the book takes the reader from ordinary differential equations to more sophisticated mathematics--Fourier analysis, vector and tensor analysis, complex variables, partial differential equations, and random processes. The emphasis is on the use of mathematical tools and techniques. The general exposition and choice of topics appeals to a wide audience of applied practitioners
Member of
Additional physical form
Also available in print version.
Cataloging source
CaBNVSL
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
SPIE Press monograph
Series volume
PM118
Target audience
  • adult
  • specialized
Mathematical techniques for engineers and scientists, Larry C. Andrews, Ronald L. Phillips, (electronic resource)
Label
Mathematical techniques for engineers and scientists, Larry C. Andrews, Ronald L. Phillips, (electronic resource)
Link
http://libproxy.rpi.edu/login?url=http://dx.doi.org/10.1117/3.467443
Publication
Note
"SPIE digital library."
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Bibliography note
Includes bibliographical references (p. 783-784) and index
Color
black and white
Contents
  • 1. Differential equations -- Introduction -- Classifications -- Solutions -- First-order equations -- Separation of variables -- Linear equations -- Initial condition -- Applications -- Second-order linear equations -- Homogeneous equations: fundamental solution sets -- Constant coefficient equations -- Nonhomogeneous equations part I -- Nonhomogeneous equations part II -- Cauchy-Euler equations -- Power series method -- Review of power series -- Solutions near an ordinary point -- Ordinary and singular points -- General method for ordinary points -- Legendre equation -- Legendre polynomials -- Legendre functions of the second kind -- Solutions near a singular point -- Method of Frobenius -- Bessel's equation -- The gamma function -- Bessel functions of the first kind -- Bessel functions of the second kind -- Differential equations related to Bessel's equation -- Suggested reading -- Exercises
  • 2. Special functions -- Introduction -- Engineering functions -- Step and signum (sign) functions -- Rectangle and triangle functions -- Sinc and Gaussian functions -- Delta and comb functions -- Functions defined by integrals -- Gamma functions -- Beta function -- Digamma and polygamma functions -- Error functions and Fresnel integrals -- Orthogonal polynomials -- Legendre polynomials -- Hermite polynomials -- Laguerre polynomials -- Chebyshev polynomials -- Family of Bessel functions -- Standard Bessel functions -- Modified Bessel functions -- Other Bessel functions -- Family of hypergeometric-like functions -- Pochhammer symbol -- Hypergeometric function of Gauss -- Confluent hypergeometric functions -- Generalized hypergeometric functions -- Applications involving hypergeometric functions -- Summary of notations for special functions -- Suggested reading -- Exercises
  • 3. Matrix methods and linear vector spaces -- Introduction -- Basic matrix concepts and operations -- Algebraic properties -- Determinants -- Special matrices -- Linear systems of equations -- Matrix Eigenvalue problems -- Real symmetric and skew-symmetric matrices -- Linear systems of differential equations -- Homogeneous systems -- Homogeneous systems with constant coefficients -- Stability of linear systems -- Nonhomogeneous systems -- Linear vector spaces -- Linear independence and basis vectors -- Inner product spaces -- Orthonormal basis and the expansion theorem -- Hilbert spaces -- Suggested reading -- Exercises
  • 4. Vector analysis -- Introduction -- Cartesian coordinates -- Base vectors -- Products of vectors -- Vector identities -- Applications -- Tensor notation -- Einstein summation convention -- Kronecker delta and permutation symbol -- Products of vectors and identities -- Vector functions of one variable -- Space curves -- Frenet-Serret formulas -- Velocity and acceleration -- Planar motion in polar coordinates -- Scalar and vector fields -- Gradient -- Divergence -- Physical interpretation of divergence -- Curl -- Vector differential operators: tensor notation -- Line and surface integrals -- Line integrals -- Conservative fields -- Surface integrals -- Integral relations between line, surface and volume integrals -- Green's theorem in the plane -- Theory of harmonic functions -- Divergence theorem and Stokes' theorem -- Electromagnetic theory -- Maxwell's equations -- Poisson's equation -- Electromagnetic wave equation -- Suggested reading -- Exercises
  • 5. Tensor analysis -- Introduction -- Tensor notation -- Special symbols -- Rectilinear coordinates -- Definition of tensor -- Tensor operations -- Symmetric and skew-symmetric tensors -- Base vectors -- Covariant base vectors -- Contravariant base vectors: reciprocal basis -- Metric tensor -- Vector algebra -- Permutation symbols in rectilinear coordinates -- Dot product -- Cross product and mixed triple product -- Relations between tensor components -- Raising and lowering indices -- Physical components -- Reduction of tensors to principal axes -- Two-dimensional case -- Three-dimensional case -- Tensor calculus: rectilinear coordinates -- Gradient, divergence, and curl -- Curvilinear coordinates -- Differentials as tensors -- Tensor fields and base vectors -- Metric tensors -- Tensor calculus: curvilinear coordinates -- Christoffel symbols -- Covariant derivative -- Absolute derivative -- Riemann-Christoffel curvature tensor -- Applications -- Gradient, divergence, and curl -- Dynamics of a particle: Newton's second law -- Dielectric tensor of an anisotropic medium -- Suggested reading -- Exercises
  • 6. Complex variables -- Introduction -- Basic concepts -- Geometric interpretation: the complex plane -- Polar coordinate representation -- Euler formulas -- Powers and roots of complex numbers -- Complex functions -- Loci and terminology -- Functions as mappings -- Limits and continuity -- The complex derivative -- Cauchy-Riemann equations -- Analytic functions -- Harmonic functions -- Elementary functions part I -- Complex exponential function -- Trigonometric functions -- Hyperbolic functions -- Elementary functions part II -- Complex logarithm -- Complex powers -- Inverse trigonometric and hyperbolic functions -- Mappings by elementary functions -- Orthogonal families -- Simple polynomials -- Reciprocal mapping -- Bilinear transformations -- Conformal mapping -- Exercises
  • 7. Complex integration, laurent series, and residues -- Introduction -- Line integrals in the complex plane -- Bounded integrals -- Cauchy's theory of integration -- Deformation of contours -- Integrals independent of path -- Cauchy's integral formula -- Cauchy's generalized formula -- Bounds on analytic functions -- Infinite series -- Sequences and series of constants -- Power series -- Laurent series -- Zeros and singularities -- Residue theory -- Residues -- Evaluation of real integrals part I -- Rational functions of cos and/or sin -- Improper integrals of rational functions -- Fourier transform integrals -- Evaluation of real integrals part II -- Harmonic functions revisited -- Harmonic functions in the half-plane -- Harmonic functions in circular domains -- Invariance of Laplace's equation -- Heat conduction -- Steady-state temperatures in the plane -- Conformal mapping -- Two-dimensional fluid flow -- Complex potential -- Source, sink, and doublet flows -- Flow around obstacles -- Circulation and lift -- Flow around a cylinder -- Suggested reading -- Exercises
  • 8. Fourier series, Eigenvalue problems, and Green's function -- Introduction -- Fourier trigonometric series -- Periodic functions as power signals -- Convergence of the series -- Even and odd functions: cosine and sine series -- Nonperiodic functions: extensions to other intervals -- Power signals: exponential Fourier series -- Parseval's theorem and the power spectrum -- Eigenvalue problems and orthogonal functions -- Regular Sturm-Liouville systems -- Generalized Fourier series -- Periodic Sturm-Liouville systems -- Singular Sturm-Liouville systems -- Green's function -- One-sided Green's function -- Boundary value problems -- Bilinear formula -- Suggested reading -- Exercises
  • 9. Fourier and related transforms -- Introduction -- Fourier integral representation -- Cosine and sine integral representations -- Fourier transforms in mathematics -- Fourier cosine and sine transforms -- Fourier transforms in engineering -- Energy spectral density function -- Table of Fourier transforms -- Generalized Fourier transforms -- Properties of the Fourier transform -- Time and frequency shifting -- Differentiation and integration -- Convolution theorem -- Linear shift-invariant systems -- Hilbert transforms -- Analytic signal representation -- Kramers-Kronig relations -- Table of transforms and properties -- Two-dimensional Fourier transforms -- Linear systems in optics -- Coherent imaging systems -- Fractional Fourier transform -- Application in optics -- Wavelets -- Haar wavelets -- Wavelet transform -- Suggested reading -- Exercises
  • 10. Laplace, Hankel, and Mellin transforms -- Introduction -- Laplace transform -- Table of transforms and operational properties -- Inverse transforms I -- Inverse transforms II -- Initial value problems -- Simple electric circuits -- Impulse response function -- Stability of linear systems -- Hankel transform -- Operational properties and table of transforms -- Mellin transform -- Operational properties and table of transforms -- Complex variable methods -- Applications involving the Mellin transform -- Products of random variables -- Electromagnetic wave propagation -- Discrete Fourier transform -- Discrete transform pair -- Z-transform -- Operational properties -- Difference equations -- Walsh transform -- Walsh functions -- Walsh series and the discrete Walsh transform -- Suggested reading -- Exercises
  • 11. Calculus of variations -- Introduction -- Functionals and extremals -- Euler-Lagrange equation -- Special cases of the Euler-Lagrange equation -- Some classical variational problems -- Shortest arc connecting two points -- Surface of revolution with minimum area -- Brachistochrone problem -- Variational notation -- Natural boundary conditions -- Other types of functionals -- Functionals with several dependent variables -- Functionals with higher-order derivatives -- Functionals with several independent variables -- Isoperimetric problems -- Constraints and Lagrange multipliers -- Sturm-Liouville problem -- Rayleigh-Ritz approximation method -- Eigenvalue problems -- Hamilton's principle -- Generalized coordinates and Lagrange's equations -- Linear theory of small oscillations -- Static equilibrium of deformable bodies -- Deflections of an elastic string -- Deflections of an elastic beam -- Two-dimensional variational problems -- Forced vibrations of an elastic string -- Equilibrium of a stretched membrane -- Suggested reading -- Exercises
  • 12. Partial differential equations -- Introduction -- Classification of second-order PDEs -- The heat equation -- Homogeneous boundary conditions -- Nonhomogeneous boundary conditions -- Derivation of the heat equation -- The wave equation -- D'Alembert's solution -- The equation of Laplace -- Rectangular domain -- Circular domain -- Maximum-minimum principle -- Generalized Fourier series -- Convective heat transfer at one endpoint -- Nonhomogeneous heat equation -- Nonhomogeneous wave equation -- Applications involving Bessel functions -- Vibrating membrane -- Scattering of plane waves by a circular cylinder -- Transform methods -- Heat conduction on an infinite domain: Fourier transform -- Heat conduction on a semi-infinite domain: Laplace transform -- Nonhomogeneous wave equation -- Poisson integral formula for the half-plane -- Axisymmetric Dirichlet problem for a half-space: Hankel transform -- Suggested reading -- Exercises
  • 13. Probability and random variables -- Introduction -- Random variables and probability distributions -- Cumulative distribution function -- Probability density function -- Discrete random variables -- Examples of density functions -- Gaussian (or normal) distribution -- Uniform distribution -- Rayleigh distribution -- Gamma distribution -- Expected values -- Higher-order moments -- Characteristic functions -- Conditional probability -- Conditional CDF and PDF -- Expected values -- Functions of one random variable -- Continuous random variables -- Expected values -- Characteristic function method -- Two random variables -- Joint distribution and density functions -- Marginal density functions -- Conditional distributions and densities -- Independent random variables -- Expected values -- Moments and correlation -- Bivariate Gaussian distribution -- Functions of two or more random variables -- Sums of two random variables -- Rician distribution -- Products of random variables -- Quotients of random variables -- Two functions of two random variables -- Sums of several random variables -- Limit distributions -- Gaussian density function -- Gamma density function -- Suggested reading -- Exercises
  • 14. Random processes -- Introduction -- Probabilistic description of random process -- First- and second-order statistics -- Stationary random processes -- Autocorrelation and autocovariance functions -- Time averages and ergodicity -- Basic properties -- Structure functions -- Cross-correlation and cross-covariance -- Basic properties -- Cross-correlation techniques in radar -- Power spectral density functions -- Riemann-Stieltjes integral -- Transformations of random processes -- Memoryless nonlinear transformations -- Linear systems -- Correlation and spectral density functions for the output of a linear system -- Stationary Gaussian processes -- Multivariate Gaussian distributions -- Detection devices -- Zero-crossing problem -- Suggested reading -- Exercises
  • 15. Applications -- Introduction -- Mechanical vibrations and electric circuits -- Forced oscillations I -- Damped motions -- Forced oscillations II -- Simple electric circuits -- Buckling of a long column -- Communication systems -- Frequency modulated signals -- Nonlinear devices -- Coherent detection optical receiver -- Threshold detection -- Applications in geometrical optics -- Eikonal equation -- Frenel-Serret formulas revisited -- The heated window -- Wave propagation in free space -- Hankel transform method -- Huygens-Fresnel integral: lowest-order Gaussian mode -- Hermite-Gaussian modes -- ABCD Ray matrices for paraxial systems -- Generalized Huygens-Fresnel integral -- Gaussian lens -- Fourier-transform plane -- Zernike polynomials -- Application in optics -- Atmospheric effects on imaging systems -- Aperture filter functions -- Exercises
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9780819478290&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b3828666'}
Extent
1 online resource (xv, 797 p. : ill.)
File format
multiple file formats
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9780819478290
Isbn Type
(electronic)
Other physical details
digital file.
Reformatting quality
access
Specific material designation
remote
System details
  • System requirements: Adobe Acrobat Reader
  • Mode of access: World Wide Web

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...