Coverart for item
The Resource In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis

In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis

Label
In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis
Title
In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis
Creator
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Springer Theses Ser
In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis
Label
In Silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 Via M. Maripaludis
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4699972
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Supervisor's Foreword -- Parts of this thesis have been published in the following journal articles: -- Publications and Conferences -- Journal Publications -- Conference Proceedings -- Acknowledgements -- Declaration -- Contents -- Nomenclature -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Methane, a Useful Fuel -- 1.1.1 Production Routes -- 1.1.1.1 Industrial -- 1.1.1.2 Biological -- 1.2 M. maripaludis S2, an Interesting Biocatalyst -- 1.3 In Silico Metabolic Modeling -- 1.4 Scope of the Thesis -- 1.4.1 Objectives -- 1.4.2 Organization -- References -- 2 Literature Review -- 2.1 CO2 Fixing Microbes -- 2.2 M. maripaludis-A CO2 Fixer -- 2.2.1 Taxonomy, Cell Structure, and Cultivation -- 2.2.2 Metabolic Processes in M. maripaludis -- 2.2.2.1 Methanogenesis -- 2.2.2.2 Acetyl-CoA Synthesis -- 2.2.2.3 Pyruvate Synthesis -- 2.2.2.4 Glycolysis/Gluconeogenesis and Glycogenolysis/Glyconeogenesis -- 2.2.2.5 Tri-Carboxylic Acid (TCA) Cycle -- 2.2.2.6 Pentose Phosphate Pathway (PPP) -- 2.2.2.7 Nitrogen Metabolism -- 2.2.2.8 Amino Acid Metabolism -- 2.2.2.9 Nucleotide Biosynthesis -- 2.2.3 Molecular Biology Tools -- 2.2.3.1 Selectable Markers -- 2.2.3.2 Shuttle Vectors -- 2.2.3.3 Integrative Plasmid and Gene Replacement -- 2.2.3.4 Markerless Mutagenesis -- 2.2.4 Potential Applications -- 2.2.4.1 Wastewater Treatment -- 2.2.4.2 Carbon Capture and Conversion -- 2.2.4.3 Methane from Renewable Energy -- 2.2.4.4 Hydrogen Production -- 2.2.4.5 Other Applications -- 2.3 Genome-Scale Engineering -- 2.3.1 Systems Biology Models: Kinetic Versus Stoichiometric -- 2.3.1.1 Constraints-Based Modeling -- 2.3.1.2 Simulation Tools -- 2.3.1.3 Applications -- 2.3.2 iMM518: A Genome-Scale Model -- 2.4 Microbial Electrolysis Cells (MECs) -- References -- 3 A Genome-Scale Metabolic Model of M. maripaludis S2 for CO2 Capture and Conversion to Methane
  • 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 Reconstructing Metabolic Network -- 3.2.2 Genome-Scale Metabolic Model -- 3.2.3 Experimental Data -- 3.2.4 Gene Essentiality/Flux Variability Analyses -- 3.3 Results and Discussion -- 3.3.1 Reconstructed Metabolic Network -- 3.3.2 Model Validation -- 3.3.3 Minimal Media -- 3.3.4 Gene Essentiality and Flux Variability Analyses -- 3.3.5 Formate as Alternate Carbon and Hydrogen Substrate -- 3.3.6 Effect of Nitrogen Sources -- 3.3.7 Novel Strains for Enhanced Methanogenesis -- 3.3.8 Comparison with Other Methanogens -- 3.4 Conclusions -- References -- 4 Flux Measurements and Maintenance Energy for CO2 Utilization by M. maripaludis -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Chemicals and Gases -- 4.2.2 Strain and Medium -- 4.2.3 Batch Cultivation -- 4.2.4 Analytical Procedures -- 4.2.5 Cell Growth Measurements -- 4.2.6 Calculation of Extracellular Fluxes -- 4.2.7 Parameter Estimation for iMM518 -- 4.3 Results and Discussion -- 4.3.1 Cell Growth -- 4.3.2 Extracellular Fluxes -- 4.3.3 GAM, NGAM, and ATP Gain -- 4.3.4 Intracellular Fluxes -- 4.3.5 Effects of Amino Acids and Vitamins from iMM518 -- 4.4 Conclusions -- References -- 5 Diazotrophy Enhances CO2 to Methane Conversion in M. maripaludis -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Chemicals and Gases -- 5.2.2 Strain and Media -- 5.2.3 Reactor Setup -- 5.2.4 Analytical Procedures -- 5.2.5 Extracellular Fluxes and Maintenance Energy Estimation -- 5.3 Results and Discussion -- 5.3.1 Growth Under Different Nitrogen Sources -- 5.3.2 Comparison with Other Diazotrophic Methanococci -- 5.3.3 Growth, Extracellular Fluxes During N2-Fixation and Maintenance Energy Estimation Using iMM518 -- 5.4 Conclusions -- References -- 6 Contributions and Future Recommendations -- 6.1 Contributions
  • 6.1.1 Consolidated Review of M. maripaludis Metabolism -- 6.1.2 iMM518, Development of First Constraint-Based Genome-Scale Metabolic Model of M. maripaludis S2 -- 6.1.3 Experimental Measurement of Fluxes and Estimation of Maintenance Energy Parameters -- 6.1.4 Effect of Diazotrophy on Methanogenesis by M. maripaludis -- 6.2 Future Recommendations -- 6.2.1 Electromethanogenesis -- 6.2.2 Model-Driven Approaches for Production of Desired Fuels/Chemicals -- 6.2.3 Co-culture Modeling/Experimentation -- References -- Summary -- Appendices
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9789811025105&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4392815'}
Extent
1 online resource (140 pages)
Form of item
online
Isbn
9789811025105
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...