Coverart for item
The Resource Handbook for Chemical Process Research and Development

Handbook for Chemical Process Research and Development

Label
Handbook for Chemical Process Research and Development
Title
Handbook for Chemical Process Research and Development
Creator
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Handbook for Chemical Process Research and Development
Label
Handbook for Chemical Process Research and Development
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4732218
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Author -- List of Abbreviations -- Chapter 1: Modes of Reagent Addition: Control of Impurity Formation -- 1.1 Direct Addition -- 1.1.1 Sonogashira Reaction -- (I) Problematic "All-In" Conditions -- (II) Solutions-Semibatch Conditions (DA) -- 1.1.2 Michael Reaction -- (I) Problematic Reaction Conditions (RA Mode) -- (II) Chemistry Diagnosis -- (III) Solutions -- 1.1.3 Fischer Indole Synthesis -- (I) Reaction Problems -- (II) Solutions -- Procedure -- 1.1.4 Amide Formation -- 1.1.4.1 EEDQ-Promoted Amide Formation -- 1.1.4.2 CDI-Promoted Amide Formation -- 1.1.5 Thioamide Formation -- (I) Problems -- (II) Solutions -- Procedure -- 1.1.6 C-O Bond Formation -- 1.1.6.1 SRN1 Reaction -- 1.1.6.2 Mitsunobu Reaction -- 1.2 Reverse Addition -- 1.2.1 Grignard Reaction -- 1.2.1.1 Reaction with Alkyl Aryl Ketone -- 1.2.1.2 Grignard Reaction with Aldehydes -- 1.2.1.3 Reaction of Grignard Reagent with Ester -- 1.2.2 Copper-Catalyzed Epoxide Ring-Opening -- Solutions -- Procedure -- 1.2.3 Nitration Reaction -- (I) Problematic Addition Order -- (II) Chemistry Diagnosis -- (III) Solutions -- Procedure -- 1.2.4 Cyclization Reaction -- Procedure -- 1.2.5 Amide Formation -- 1.2.5.1 CDI-Promoted Amide Formation -- 1.2.5.2 Phenyl Chloroformate-Promoted Urea Formation -- 1.2.6 Reduction of Ketone to Hydrocarbon -- (I) Problematic Addition Order -- (II) Chemistry Diagnosis -- (III) Solutions -- Procedure -- 1.2.7 1,3-Dipole-Involved Reactions -- 1.2.7.1 Addition-Elimination/Cyclization -- 1.2.7.2 [3+2]-Cycloaddition -- 1.3 Other Addition Modes -- 1.3.1 Sequential Addition -- (I) Problematic Addition Sequence -- (II) Solutions (to Control the Concentration of CDMT) -- Procedure -- 1.3.2 Portionwise Addition -- 1.3.2.1 Cyclization
  • 1.3.2.2 Dehydrochlorination -- 1.3.3 Slow Release of Starting Material/Reagent -- 1.3.3.1 Synthesis of Urea -- 1.3.3.2 Preparation of Alkylamine -- 1.3.4 Alternate Addition -- (I) Chemistry Diagnosis -- (II) Solutions -- 1.3.5 Concurrent Addition -- 1.3.5.1 Bromination Reaction -- 1.3.5.2 Difluoromethylation -- 1.3.5.3 Diels-Alder Reaction -- Notes -- Chapter 2: Process Optimization -- 2.1 Addition of Additives -- 2.1.1 Acid Additives -- 2.1.1.1 Hydrochloric Acid -- 2.1.1.2 Sulfuric Acid -- 2.1.1.3 Acetic Acid -- 2.1.1.4 Benzoic Acid as Amine Stabilizer -- 2.1.1.5 Trifluoroacetic Acid -- 2.1.1.6 Toluenesulfonic Acid -- 2.1.2 Base Additives -- 2.1.2.1 Potassium Carbonate -- 2.1.2.2 Sodium Hydrogen Carbonate -- 2.1.2.3 Diisopropylethylamine -- 2.1.2.4 1,4-Diazabicyclo[2.2.2]octane -- 2.1.2.5 Potassium tert-Butoxide -- 2.1.2.6 Sodium Methoxide -- 2.1.2.7 Sodium Acetate -- 2.1.2.8 Sodium Acrylate -- 2.1.3 Inorganic Salts -- 2.1.3.1 Lithium Salts -- 2.1.3.2 Sodium Bromide -- 2.1.3.3 Magnesium Salts -- 2.1.3.4 Calcium Chloride -- 2.1.3.5 Zinc Chloride -- 2.1.4 Assortment of Scavengers -- 2.1.4.1 Catechol as Methyl Cation Scavenger -- 2.1.4.2 Anisole as Quinone Methide Scavenger -- 2.1.4.3 Carboxylic Esters -- 2.1.4.4 Thionyl Chloride as Water Scavenger -- 2.1.4.5 1-Hexene as HCl Scavenger -- 2.1.4.6 Epoxyhexene as HBr Scavenger -- 2.1.4.7 Acetic Anhydride as Aniline Scavenger -- 2.1.4.8 Amberlite CG50 as Ammonia Scavenger -- 2.1.5 Other Additives -- 2.1.5.1 Imidazole -- 2.1.5.2 Triethylamine Hydrochloride -- 2.1.5.3 Methyl Trioctylammonium Chloride -- 2.1.5.4 TMSCl (or BF3 · Etherate) -- 2.1.5.5 Water -- 2.1.5.6 Hydroquinone -- 2.1.5.7 B(OMe)3 in Borane Reduction of Acid -- 2.1.5.8 Isobutanoic Anhydride -- 2.1.5.9 1,1-Dimethyl-2-Phenylethyl Acetate -- 2.1.5.10 Alcohols -- 2.1.5.11 1,4-Dioxane -- 2.1.5.12 Benzotriazole
  • 2.1.5.13 1-Hydroxybenzotriazole -- 2.1.5.14 1,4-Dibromobutane -- 2.1.5.15 Diethanolamine -- 2.2 Approaches to Optimize Catalytic Reactions -- 2.2.1 Suzuki-Miyaura Reaction -- 2.2.1.1 Catalyst Poison -- 2.2.1.2 Precipitation of Palladium Catalyst -- 2.2.1.3 Instability of Arylboronic Acids -- 2.2.1.4 Problems Associated with Base -- 2.2.1.5 Dimer Impurity -- 2.2.2 Catalytic Deprotection -- 2.2.2.1 Debenzylation -- 2.2.2.2 Catalytic Removal of Cbz Group -- 2.2.3 Catalytic Hydrogenation -- 2.2.3.1 Reduction of Nitro Group -- 2.2.3.2 Reduction of Pyridine Ring -- 2.2.3.3 Reduction of Cyano Group -- 2.2.3.4 Reduction of Imine Intermediate -- 2.2.3.5 Catalytic Hydrogenation of Azide -- 2.2.4 Other Catalytic Reactions -- 2.2.4.1 Negishi Cross-Coupling Reaction -- 2.2.4.2 Cu(I)-Catalyzed Grignard Reaction -- 2.2.4.3 Decarboxylative Bromination -- 2.2.4.4 Sulfonylation Reaction -- 2.2.4.5 Preparation of Acid Chloride -- 2.2.4.6 Catalytic Dechlorination -- 2.3 Temperature and Pressure -- 2.3.1 Temperature Effect -- 2.3.1.1 Metal-Hydrogen/Halogen Exchange -- 2.3.1.2 Cyclization Reactions -- 2.3.1.3 Cross-Coupling Reaction -- 2.3.1.4 Vilsmeier Reaction -- 2.3.1.5 Oxidative Hydrolysis -- 2.3.1.6 Reduction of Ester -- 2.3.1.7 Michael Addition -- 2.3.1.8 Amide Formation -- 2.3.2 Pressure Effect -- 2.3.2.1 Nitrile Reduction -- 2.3.2.2 [3+2]-Cycloaddition -- 2.4 Other Approaches -- 2.4.1 Low Product Yield -- 2.4.1.1 Incomplete Reaction -- 2.4.1.2 Loss of Product during Isolation -- 2.4.1.3 Side Reactions of Starting Materials -- 2.4.1.4 Side Reactions of Intermediates -- 2.4.1.5 Side Reactions of Products -- 2.4.2 Problems Associated with Impurities -- 2.4.2.1 Residual Zn -- 2.4.2.2 Residual MTBE -- 2.4.2.3 Residual Water -- 2.4.2.4 Residual Oxygen -- 2.4.3 Reactions with Poor Selectivity
  • 2.4.3.1 CIDR to Improve cis/trans Selectivity -- 2.4.3.2 Two-Step Process to Mitigate Racemization -- 2.4.3.3 Reduction of Carboxylic Acid -- 2.4.3.4 Sacrificial Reagent in Regioselective Acetylation -- 2.4.3.5 Protecting Group -- 2.4.3.6 Functional Group in SNAr Reaction -- 2.4.3.7 Enamine Exchange -- 2.4.3.8 Carryover Approach -- 2.4.4 Miscellaneous Reaction Problems -- 2.4.4.1 Friedel-Crafts Reaction -- 2.4.4.2 Reduction of C-C Double Bond -- 2.4.4.3 Reduction of Nitrile -- 2.4.4.4 Polymerization Issues -- 2.4.4.5 Activation of Functional Groups -- 2.4.4.6 Deactivation of Functional Groups -- 2.4.4.7 Side Reactions with Excess of Reagent -- 2.4.4.8 Optimization of Telescoped Process -- Notes -- Chapter 3: Hazardous Reactions -- 3.1 Oxidation Reactions -- 3.1.1 Oxidation of Olefins -- 3.1.1.1 Oxidation with mCPBA -- 3.1.1.2 Oxidation with Sodium Perborate -- 3.1.1.3 Oxidation with Ozone -- 3.1.1.4 Oxidation with KMnO4 -- 3.1.2 Oxidation of Alcohols to Aldehydes or Ketones -- 3.1.2.1 SO3 · Py/DMSO System -- 3.1.2.2 Ac2O/DMSO System -- 3.1.2.3 TFAA/DMSO/TEA System -- 3.1.2.4 TEMPO/NaOCl System -- 3.1.2.5 RuCl3/NaOCl System -- 3.1.2.6 Sulfinimidoyl Chloride -- 3.1.3 Oxidation of Aldehydes to Acids -- Procedure -- 3.1.4 Oxidation of Sulfides to Sulfoxides -- 3.1.5 Oxidation of Sulfides to Sulfones -- 3.1.5.1 Oxidation with Oxone -- 3.1.5.2 Oxidation with Sodium Perborate -- 3.1.5.3 Oxidation with Sodium Periodate -- 3.1.5.4 Oxidation with NaOCl -- 3.1.5.5 Oxidation with H2O2/Na2WO4 -- 3.1.5.6 Oxidation with TMSCl/KNO3 -- 3.1.6 Other Oxidative Reactions -- 3.1.6.1 Dakin Oxidation -- 3.1.6.2 Hydroxylation -- 3.1.6.3 Oxidative Cyclization -- 3.1.6.4 Oxidation of Phosphite -- 3.2 Reduction Reactions -- 3.2.1 Boron-Based Reductive Reactions -- 3.2.1.1 Reduction with NaBH4 -- 3.2.1.2 Reduction with Borane
  • 3.2.2 Reduction with Lithium Aluminum Hydride -- Procedure -- 3.3 Nitrogen-Involved Hazardous Reactions -- 3.3.1 Diazonium Salts -- 3.3.1.1 Hydrolysis of Diazonium Salt -- 3.3.1.2 Diazonium Salt-Involved Cyclization -- 3.3.1.3 Nitroindazole Formation -- 3.3.1.4 Synthesis of Trifluoromethyl-Substituted Cyclopropanes -- 3.3.1.5 Sandmeyer Reaction -- 3.3.2 Azide Compounds -- 3.3.2.1 Nucleophilic Displacement -- 3.3.2.2 Nucleophilic Addition -- 3.3.3 Hydrazine -- 3.3.3.1 Wolff-Kishner Reduction -- 3.3.3.2 Synthesis of Indazole -- 3.3.3.3 Synthesis of Pyrazole -- 3.3.3.4 Synthesis of Triazole -- 3.3.3.5 Preparation of Dihydropyridazinone -- 3.3.3.6 Preparation of Phthalazin-1-ol -- 3.3.3.7 Preparation of Alkylamine -- 3.3.4 Preparation of Aryl (or Alkyl) Hydrazines and Related Reactions -- 3.3.4.1 Preparation of 5-Hydrazinoquinoline -- 3.3.4.2 Synthesis of Aminopyrazole -- 3.3.4.3 Fischer Indole Synthesis -- 3.3.4.4 Preparation of Alkylhydrazine -- 3.3.5 Hydroxylamine -- 3.3.6 Oxime -- Procedure -- 3.3.7 N-Oxide -- 3.3.8 Nitro Compounds -- 3.3.8.1 Preparation of Nitro Compounds by Nitration -- 3.3.8.2 Hazardous Reactions of Nitro Compounds -- 3.3.9 Ritter Reaction -- (I) Ritter Reaction Incident -- (II) Solutions -- 3.4 Other Hazardous Reactions and Reagents -- 3.4.1 Other Hazardous Reactions -- 3.4.1.1 Heck Reaction -- 3.4.1.2 Negishi Cross-Coupling Reaction -- 3.4.1.3 Blaise Reaction -- 3.4.1.4 Hydrogen/Metal Exchange -- 3.4.1.5 Halogenation Reactions -- 3.4.1.6 Dehydrochlorination -- 3.4.1.7 Thiocyanation -- 3.4.1.8 Gas-Involved Reactions -- 3.4.1.9 Darzens Reaction -- 3.4.2 Hazardous Reagents -- 3.4.2.1 Volatile Organic Compounds -- 3.4.2.2 High-Energy Compounds -- 3.4.2.3 Toxic Compounds -- Notes -- Chapter 4: Catalytic Reactions -- 4.1 Two-Phase Reactions -- 4.1.1 Nucleophilic Substitution Reactions
  • 4.1.1.1 Enhancement of SN2 Reaction Rate
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9781315350202&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4368019'}
Extent
1 online resource (859 pages)
Form of item
online
Isbn
9781315350202
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...