Coverart for item
The Resource Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces

Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces

Label
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
Title
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
Creator
Contributor
Subject
Language
eng
Summary
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics
Member of
Cataloging source
EBLCP
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Annals of mathematics studies
Series volume
no. 179
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
Label
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
Link
http://www.jstor.org/stable/10.2307/j.ctt7svpc
Publication
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1 Key notions and notation; Chapter 2. Gâteaux Dfferentiability of Lipschitz Functions; 2.1 Radon-Nikodým Property; 2.2 Haar and Aronszajn-Gauss Null Sets; 2.3 Existence Results for Gâteaux Derivatives; 2.4 Mean Value Estimates; Chapter 3. Smoothness, Convexity, Porosity, and Separable Determination; 3.1 A criterion of Differentiability of Convex Functions; 3.2 Fréchet Smooth and Nonsmooth Renormings; 3.3 Fréchet Differentiability of Convex Functions; 3.4 Porosity and Nondifferentiability
  • 3.5 Sets of Fréchet Differentiability Points3.6 Separable Determination; Chapter 4. e-Fréchet Differentiability; 4.1 e-Differentiability and Uniform Smoothness; 4.2 Asymptotic Uniform Smoothness; 4.3 e-Fréchet Differentiability of Functions on Asymptotically Smooth Spaces; Chapter 5. G-Null and Gn-Null Sets; 5.1 Introduction; 5.2 G-Null Sets and Gâteaux Differentiability; 5.3 Spaces of Surfaces; 5.4 G- and Gn-Null Sets of low Borel Classes; 5.5 Equivalent Definitions of Gn-Null Sets; 5.6 Separable Determination; Chapter 6. Fréchet Differentiability Except for G-Null Sets; 6.1 Introduction
  • 6.2 Regular Points6.3 A Criterion of Fréchet Differentiability; 6.4 Fréchet Differentiability Except for G-Null Sets; Chapter 7. Variational Principles; 7.1 Introduction; 7.2 Variational Principles via Games; 7.3 Bimetric Variational Principles; Chapter 8. Smoothness and Asymptotic Smoothness; 8.1 Modulus of Smoothness; 8.2 Smooth Bumps with Controlled Modulus; Chapter 9. Preliminaries to Main Results; 9.1 Notation, Linear Operators, Tensor Products; 9.2 Derivatives and Regularity; 9.3 Deformation of Surfaces Controlled by?n; 9.4 Divergence Theorem; 9.5 Some Integral Estimates
  • Chapter 10. Porosity, Gn- and G-Null Sets10.1 Porous and s-Porous Sets; 10.2 A Criterion of Gn-nullness of Porous Sets; 10.3 Directional Porosity and Gn-Nullness; 10.4 s-Porosity and Gn-Nullness; 10.5 G1-Nullness of Porous Sets and Asplundness; 10.6 Spaces in which s-Porous Sets are G-Null; Chapter 11. Porosity and e-Fréchet Differentiability; 11.1 Introduction; 11.2 Finite Dimensional Approximation; 11.3 Slices and e-Differentiability; Chapter 12. Fréchet Differentiability of Real-Valued Functions; 12.1 Introduction and Main Results; 12.2 An Illustrative Special Case
  • 12.3 A Mean Value Estimate12.4 Proof of Theorems; 12.5 Generalizations and Extensions; Chapter 13. Fréchet Differentiability of Vector-Valued Functions; 13.1 Main Results; 13.2 Regularity Parameter; 13.3 Reduction to a Special Case; 13.4 Regular Fréchet Differentiability; 13.5 Fréchet Differentiability; 13.6 Simpler Special Cases; Chapter 14. Unavoidable Porous Sets and Nondifferentiable Maps; 14.1 Introduction and Main Results; 14.2 An Unavoidable Porous Set in l1; 14.3 Preliminaries to Proofs of Main Results; 14.4 The Main Construction; 14.5 The Main Construction; 14.6 Proof of Theorem
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9781283379953&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4327591'}
Extent
1 online resource (436 pages).
Form of item
online
Isbn
9781283379953
Media category
computer
Media MARC source
rdamedia
Media type code
c
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...