Coverart for item
The Resource Energy and Resource Efficiency in Aluminium Die Casting

Energy and Resource Efficiency in Aluminium Die Casting

Label
Energy and Resource Efficiency in Aluminium Die Casting
Title
Energy and Resource Efficiency in Aluminium Die Casting
Creator
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Sustainable Production, Life Cycle Engineering and Management Ser
Energy and Resource Efficiency in Aluminium Die Casting
Label
Energy and Resource Efficiency in Aluminium Die Casting
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=3567918
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Foreword -- Acknowledgements -- Contents -- Symbols and Abbreviations -- 1 Introduction -- 1.1 Motivation -- 1.2 Research Objective and Approach -- 2 Aluminium Die Casting and Its Environmental Aspects -- 2.1 Industrial Value Chains and Aluminium Die Casting -- 2.1.1 Industrial Process, Process- and Value Chains -- 2.1.1.1 Manufacturing Process -- 2.1.1.2 Process Chains -- 2.1.1.3 Industrial Value Chains -- 2.1.1.4 Vertical and Horizontal Hierarchies Within Industrial Value Chains -- Vertical Hierarchies -- Horizontal Hierarchies -- 2.1.2 Aluminium Die Casting -- 2.1.2.1 Classification of the Aluminium Die Casting Process -- 2.1.2.2 Global Aluminium Flows and German Aluminium Production Volumes -- 2.1.2.3 Raw and Secondary Material Input Flows -- Primary Aluminium Production -- Secondary Aluminium Input Fractions -- 2.1.2.4 Process Chain of an Alloy Supplier -- 2.1.2.5 Transportation Scenarios Between Alloy Supplier and Foundry -- 2.1.2.6 Process Chain of a Die Casting Foundry -- 2.1.2.7 Technical Description of the Aluminium Die Casting Process -- Process Sequence -- Die Casting Cell and Equipment -- 2.2 Environmental Aspects of Aluminium Die Casting -- 2.2.1 Energy and Resource Efficiency -- 2.2.2 Methods and Tools for Increasing Energy and Resource Efficiency -- 2.2.2.1 Data Acquisition -- 2.2.2.2 Modelling and Visualisation -- 2.2.2.3 Simulation -- 2.2.2.4 Evaluation -- 2.2.3 Environmental Impacts of Aluminium Die Casting -- 2.2.3.1 Process Perspective -- Input and Output Flows -- Material Efficiency -- Energy Intensity -- 2.2.3.2 Foundry Perspective -- Energy Intensity -- Material Efficiency -- 2.2.3.3 Alloy Supplier Perspective -- Energy and Material Efficiency -- Waste and Emissions -- 2.2.3.4 Value Chain Perspective -- Material Efficiency and CO2eq. Emissions -- Primary Versus Secondary Aluminium Production
  • Recycling, Downgrading and in-Use-Stocks of Aluminium -- 3 Existing Approaches -- 3.1 Background for Selection and Evaluation of Existing Approaches -- 3.1.1 Procedure and Limitations of Analysis -- 3.1.2 Definition of Criteria -- 3.1.2.1 Scope -- 3.1.2.2 Data and Model Quality -- 3.1.2.3 Application -- 3.2 Review on Relevant Research Approaches -- 3.2.1 Generic Approaches -- 3.2.2 Specific Approaches for Metal Casting -- 3.3 Comparative Overview -- 3.4 Derivation of Further Research Demand -- 4 Multi-level Multi-scale Framework for Enhancing Energy and Resource Efficiency in Production -- 4.1 Research Methodology -- 4.2 Requirements and Surrounding Conditions -- 4.3 Framework Development -- 4.3.1 Module 1-System Definition -- 4.3.1.1 System Levels and Actors (M1.1) -- System Level 3-Manufacturing Process -- System Level 2-(in-House) Process Chain -- System Level 1-Cross Company Industrial Value Chain -- Actors Per System Level -- 4.3.1.2 Varying Time Scales Across Hierarchical System Levels (M1.2) -- 4.3.2 Module 2-Procedural Approach -- 4.3.3 Module 3-Methodological Toolbox -- 4.3.3.1 Assignment of Methods (M3.1) -- 4.3.3.2 Synergetic Application (M3.2) -- 4.3.3.3 Performance Indicator Framework (M3.3) -- 5 Multi-level Multi-scale Framework for Enhancing Energy and Resource Efficiency in Aluminium Die Casting -- 5.1 Course of Discussion -- 5.2 Specific Framework for Aluminium Die Casting -- 5.2.1 Actors and System Levels -- 5.2.2 Assignment of Selected Methods and Tools to System Elements -- 5.2.3 Specific Procedure for Aluminium Die Casting Production -- 5.3 Objects of Investigation -- 5.3.1 Actors -- 5.3.2 Products -- 5.4 Definition of System Boundaries -- 5.5 Structural Analysis of Energy and Resource Flows -- 5.5.1 System Elements -- 5.5.2 Considered Energy and Material Flows -- 5.5.3 Synthesis of a Generic Structural Model
  • 5.5.3.1 Alloy Supplier -- 5.5.3.2 Foundry -- 5.6 Hot Spot Analysis of Energy Demands -- 5.6.1 Foundry 1 (Products 1 and 2) -- 5.6.2 Foundry 2 (Products 3, 4 and 5) -- 5.6.3 Foundry 3 (Product Families 6-12) -- 5.6.4 Conclusion of Hot Spot Analysis -- 5.7 Data Acquisition -- 5.7.1 Alloy Supplier -- 5.7.1.1 Preparation and Melting of Secondary Metal Inputs -- 5.7.1.2 Alloying -- 5.7.2 Foundry -- 5.7.2.1 Smelter -- 5.7.2.2 Die Casting Cell -- 5.7.2.3 Heat Treatment -- 5.7.2.4 Finishing Section -- 5.7.3 Upstream Process Chains -- 5.8 Modelling, Simulation and Visualisation -- 5.8.1 Input and Output Modelling of System Elements -- 5.8.1.1 Sample Input and Output Balances -- 5.8.1.2 Aggregation of Energy Carrier and Resource Flows Per Process ChainSection -- 5.8.1.3 Average Energy and Resource Flows Per Process Chain (Section) and Definition of Focus Flows -- 5.8.1.4 Identification of Reference Process Chains and Parameterization of Generic Model -- 5.8.2 Simulation of the Generic Quantitative Model -- 5.8.3 Visualisation of Energy and Resource Flows -- 5.8.3.1 Value Chain Level -- 5.8.3.2 (In-House) Process Chain Level -- 5.9 Analysis and Evaluation of the Generic Model -- 5.9.1 Actor Specific Energy Demand Evaluation -- 5.9.2 Environmental Assessment -- 5.9.3 Sensitivity Analyses -- 5.9.3.1 Electricity -- 5.9.3.2 Natural Gas -- 5.9.3.3 Aluminium (Cycle Material) -- 5.9.3.4 Alloying Elements -- 5.10 Improvement Scenarios -- 5.10.1 Description of Improvement Measures -- 5.10.1.1 Scenario A: Reduced Cycle Material Due to Optimised Gating Systems -- 5.10.1.2 Scenario B: Delivery of Liquid Aluminium to Foundry -- 5.10.1.3 Scenario C: Salt-Free Smelting of Purified Secondary Aluminium in Shaft Melting Furnaces at Alloy Supplier -- 5.10.1.4 Scenario D: Deactivation of Filters at Melting Furnaces
  • 5.10.1.5 Scenario E: Electricity Savings at the Finishing Section Due to Organizational Changes -- 5.10.1.6 Scenario F: Reduced Compressed Air Demand Due to Fixed Leakages -- 5.10.1.7 Scenario G: Reduced Compressed Air Demand and Less Die Tempering Due to Optimized Spray Heads for Form Release Agents -- 5.10.1.8 Scenario H: Improved Process Parameters for the T7 Heat Treatment -- 5.10.1.9 Scenario I: Renewable Electricity Supplies from Hydropower Plants -- 5.10.1.10 Scenario J: Combination of Scenarios A-H -- 5.10.1.11 Scenario K: Combination of Scenarios A-I -- 5.10.2 Comparative Evaluation of Improvement Measures -- 6 Summary and Outlook -- 6.1 Summary -- 6.2 Concept Evaluation -- 6.3 Outlook -- References
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319188157&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4383859'}
Extent
1 online resource (263 pages)
Form of item
online
Isbn
9783319188157
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...