Coverart for item
The Resource Dynamic Response of Infrastructure to Environmentally Induced Loads : Analysis, Measurements, Testing, and Design

Dynamic Response of Infrastructure to Environmentally Induced Loads : Analysis, Measurements, Testing, and Design

Label
Dynamic Response of Infrastructure to Environmentally Induced Loads : Analysis, Measurements, Testing, and Design
Title
Dynamic Response of Infrastructure to Environmentally Induced Loads
Title remainder
Analysis, Measurements, Testing, and Design
Creator
Contributor
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Lecture Notes in Civil Engineering Ser.
Series volume
v.2
Dynamic Response of Infrastructure to Environmentally Induced Loads : Analysis, Measurements, Testing, and Design
Label
Dynamic Response of Infrastructure to Environmentally Induced Loads : Analysis, Measurements, Testing, and Design
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4867930
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Contents -- 1 Influence of Seismic Wave Angle of Incidence Over the Response of Long Curved Bridges Considering Soil-Structure Interaction -- Abstract -- 1.1 Introduction -- 1.2 Overview of the Bridge Studied -- 1.3 Modeling of the Bridge-Soil System -- 1.4 Effect of Direction of Excitation on the Seismic Response of Bridges -- 1.4.1 Seismic Scenarios Studied -- 1.4.2 Methodology -- 1.4.3 Analyses Results of the Soil-Structure System -- 1.4.4 Analyses Results of the Fixed Base System -- 1.4.5 Interpretation of the Analyses Results -- 1.5 Conclusions -- Acknowledgements -- References -- 2 Alternative Approaches to the Seismic Analysis of R/C Bridges -- Abstract -- 2.1 Introduction -- 2.2 Basic Concepts and Comparison of the DDBD and SBD -- 2.2.1 Basics of the DDBD -- 2.2.2 Basics of the SBD and the Equal Displacement Rule -- 2.2.3 Comparison of the SBD and the DDBD -- 2.3 An Overview of the Pushover-Based Methods Included in the Design Codes and Guidelines -- 2.3.1 Specifics of the Analysis of Bridges -- 2.3.2 Applicability of Standard Pushover-Based Methods -- 2.4 Conclusions -- References -- 3 Multi-platform Hybrid (Experiment-Analysis) Simulations -- Abstract -- 3.1 Hybrid (Experiment-Analysis) Simulation Method -- 3.1.1 Overview and Historical Background -- 3.1.1.1 Pseudo-dynamic and Real-Time Hybrid Simulations -- 3.1.1.2 Conventional or Sub-structure Hybrid Simulation -- 3.1.1.3 On-Site or Distributed Hybrid Simulation -- 3.1.1.4 Step-Wise or Continuous Hybrid Simulation -- 3.1.1.5 Multi-platform Hybrid Simulation -- 3.1.2 Numerical Integration Schemes -- 3.1.2.1 Newmark's Integration Scheme -- 3.1.2.2 Ü-Operator Splitting (Ü-OS) Method -- 3.1.3 Implementation of Pseudo-dynamic Hybrid Simulation -- 3.1.3.1 Integration Module -- 3.1.3.2 Substructure Module -- 3.1.3.3 Communication Mechanism
  • 3.1.3.4 Interface Program for Actuator Controllers -- 3.1.4 Hybrid Simulation Examples -- 3.1.4.1 Inter-continental Distributed Hybrid Simulation of a Three Span Bridge -- 3.1.4.2 Hybrid Simulation of a Six-Storey Steel Frame with SCED Braces -- 3.2 Latest Development in the Hybrid Simulation Method -- 3.2.1 Limitations and Challenges -- 3.2.2 Model Updating Method -- 3.2.3 Multi-specimen Hybrid Simulation -- 3.3 Summary -- References -- 4 Field Structural Dynamic Tests at the Volvi-Greece European Test Site -- Abstract -- 4.1 Overview -- 4.2 Description of the 6-Story Model Structure -- 4.3 Low Amplitude Free Vibration Dynamic Tests of the 6-Story Model Structure -- 4.4 Excitation of the 6-Story Structure by Explosions -- 4.5 Summary and Conclusions -- References -- 5 An Intercontinental Hybrid Simulation Experiment for the Purposes of Seismic Assessment of a Three-Span R/C Bridge -- Abstract -- 5.1 Introduction -- 5.2 Description of the Bridge -- 5.3 Computational and Experimental Scheme -- 5.3.1 Preparatory Computational and Experimental Works -- 5.4 Series of Multi-platform and Hybrid Experiments -- 5.5 Comparative Assessment of the Dynamic Response Results -- 5.6 Conclusions -- Acknowledgements -- References -- 6 Experimental Seismic Assessment of the Effectiveness of Isolation Techniques for the Seismic Protection of Existing RC Bridges -- Abstract -- 6.1 Introduction -- 6.2 Pseudo-dynamic Testing -- 6.2.1 The Bridge Sample Structure -- 6.2.2 The Pier Prototypes -- 6.3 Test Set-up -- 6.4 Experimental Tests -- 6.5 Experimental Results -- 6.5.1 Test Results on the Non-isolated Viaduct -- 6.5.2 Test Results on the Isolated Viaduct -- 6.6 Shake Table Testing -- 6.6.1 The Bridge Sample Structure -- 6.6.2 The Bridge Prototype -- 6.6.3 The Test Set-up -- 6.6.4 Testing Program -- 6.6.5 Discussion of the Experimental Results
  • 6.6.5.1 Test Results on the as-Built System -- 6.6.5.2 Test Results on the Deck-Isolated System -- 6.7 Conclusions -- Acknowledgements -- References -- 7 Modeling of High Damping Rubber Bearings -- 7.1 Introduction -- 7.2 Testing of High Damping Rubber Bearings -- 7.3 Existing Models for High Damping Rubber Bearings -- 7.3.1 Rate-Independent Models -- 7.3.2 Rate-Dependent Models -- 7.4 Discussion -- 7.5 An Alternative Model for High Damping Rubber Bearings -- 7.6 Conclusions -- References -- 8 Experimental Methods and Activities in Support of Earthquake Engineering -- Abstract -- 8.1 Introduction -- 8.2 Static Testing -- 8.2.1 Structural Repair/Retrofitting -- 8.3 Shake Table Testing -- 8.4 Pseudodynamic Testing (Hybrid Simulation) -- 8.4.1 Classic PsD Testing -- 8.4.2 Substructured PsD Testing -- 8.4.3 Geographically Distributed Hybrid Simulation -- 8.5 Outreach of Experimental Results -- 8.6 Conclusions -- Acknowledgements -- References -- 9 Time Reversal and Imaging for Structures -- 9.1 Introduction -- 9.1.1 Longitudinal Waves in Thin Rods -- 9.1.2 Flexural Waves in Thin Rods -- 9.1.3 Assembly of Structural Members -- 9.2 Numerical Implementation -- 9.2.1 Discretized Equations of Motion -- 9.2.2 Time Domain Formulation -- 9.2.3 Frequency Domain Formulation -- 9.3 Time Reversal Process -- 9.3.1 Instrumentation and Data Collection -- 9.3.2 Source Localization -- 9.3.3 Damage Identification -- 9.3.4 A Bridge-Like Structural Example -- 9.4 Imaging Technique -- 9.4.1 Source Localization -- 9.4.2 Damage Identification -- 9.5 Conclusions -- References -- 10 Decentralized Infrastructure Health Monitoring Using Embedded Computing in Wireless Sensor Networks -- Abstract -- 10.1 Introduction -- 10.2 A Methodology Enabling Decentralized Condition Assessment of Civil Infrastructure -- 10.2.1 Model Updating -- 10.2.2 Condition Assessment
  • 10.3 Validation of the Decentralized Condition Assessment Methodology -- 10.3.1 Implementation -- 10.3.2 Validation of the Methodology -- 10.4 Summary and Conclusions -- Acknowledgements -- References -- 11 Effects of Local Site Conditions on Inelastic Dynamic Response of R/C Bridges -- Abstract -- 11.1 Introduction -- 11.2 Seismic Signal Recovery Methodology -- 11.3 Geological Profiles -- 11.4 Ground Motions -- 11.5 R/C Bridge Modeling -- 11.6 Dynamic Response of the R/C Bridge -- 11.7 Conclusions -- References -- 12 BEM-FEM Coupling in the Time-Domain for Soil-Tunnel Interaction -- Abstract -- 12.1 Introduction -- 12.2 Problem Definition -- 12.3 BEM-FEM Hybrid Technique -- 12.4 Verification Study -- 12.5 Numerical Simulations -- 12.6 Conclusions -- Acknowledgements -- References -- 13 Energy Methods for Assessing Dynamic SSI Response in Buildings -- Abstract -- 13.1 Introduction and Problem Outline -- 13.2 Modeling Dynamic SSI in a Conventional R/C Building -- 13.2.1 Hysteretic Material Models -- 13.2.2 Modeling SSI Effects -- 13.2.3 Top Story Displacement as Indicator -- 13.3 Energy and Damage Measures for Dynamic Response -- 13.3.1 Energy Development During Inelastic System Response -- 13.3.2 Energy Response to Harmonic Excitation -- 13.4 Model Quality Assessment -- 13.4.1 The Adjustment Factor Approach -- 13.4.2 Numerical Results -- 13.4.3 Uncertainty in the Model Framework -- 13.4.4 Total Model Uncertainty -- 13.5 Conclusions and Discussion -- References -- 14 Numerical and Experimental Identification of Soil-Foundation-Bridge System Dynamic Characteristics -- Abstract -- 14.1 Introduction -- 14.2 Prototype Structure -- 14.3 Scaled Structure with Alternative Boundary Conditions -- 14.3.1 Scaled Structure Fixed -- 14.3.2 Scaled Structure on Stabilized Soil -- 14.4 Finite Element Models -- 14.4.1 Fixed Conditions
  • 14.4.2 Soil Compliant Conditions -- 14.5 Results -- 14.5.1 Prototype Structure Versus Equivalent Scaled Structure -- 14.5.2 Identified and Numerically Predicted Natural Frequencies -- 14.5.2.1 Fixed Boundary Conditions -- 14.5.2.2 Stabilized Soil as Foundation Soil -- 14.6 Conclusions -- References -- 15 Quantification of the Seismic Collapse Capacity of Regular Frame Structures -- 15.1 Introduction and Motivation -- 15.2 Structural Modeling Strategy -- 15.2.1 General Model Properties -- 15.2.2 Material Model -- 15.2.3 P-Delta Effect -- 15.2.4 Generic Model Parameters -- 15.3 Global Seismic Collapse Capacity -- 15.4 Numerical Results -- 15.4.1 P-Delta Vulnerable Frames Without Material Deterioration -- 15.4.2 P-Delta Vulnerable Frames Exhibiting Material Deterioration -- 15.5 Summary and Conclusions -- References
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319561363&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4388259'}
Extent
1 online resource (290 pages)
Form of item
online
Isbn
9783319561363
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...