Coverart for item
The Resource Analyzing and Modeling Rank Data

Analyzing and Modeling Rank Data

Label
Analyzing and Modeling Rank Data
Title
Analyzing and Modeling Rank Data
Creator
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Chapman & Hall/CRC Monographs on Statistics & Applied Probability
Series volume
v.64
Analyzing and Modeling Rank Data
Label
Analyzing and Modeling Rank Data
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=5291426
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- MONOGRAPHS ONSTATISTICS AND APPLIED PROBABILITY -- Title -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Rank data -- Chapter 2 Looking at Data -- 2.1 Introduction: Permutation polytopes -- 2.2 Projections of polytopes -- 2.3 Marginals -- 2.4 Pairs -- 2.5 Center, spread, and distance -- 2.5.1 Some useful distances -- 2.5.2 Estimating the center -- 2.5.3 Estimating spread, location known -- 2.5.4 Estimating spread, location unknown -- 2.5.5 Clustering: £-centers -- 2.6 Linear su bspaces -- 2.6.1 Spectral decomposition -- 2.6.2 Inversions -- 2.7 Exercises -- Chapter 3 Formal Tests of Uniformity -- 3.1 Introduction -- 3.2 Summary statistics -- 3.2.1 Projections -- 3.2.2 Probabilities -- 3.2.3 Marginals -- 3.2.4 Means -- 3.2.5 Pairs -- 3.3 lnvariance and monotonicity of distances -- 3.4 Distance from a fixed vector -- 3.4.1 Means and variances -- 3.4.2 Exact distributions -- 3.4.3 Asymptotics as m-oo -- 3.5 One-sample diversity and concordance -- 3.6 Summary -- 3.7 Exercises -- Chapter 4 Comparing Populations of Judges -- 4.1 Introduction -- 4.2 The basic statistics: Multivariate analysis ofvariance tests -- 4.3 Distances from a modal ranking -- 4.4 Concordance and diversity -- 4.5 Exercises -- Chapter 5 Overview of Models -- 5.1 Introduction -- 5.2 Probability models - General -- 5.3 Thurstonian =O rder statistic models -- 5.4 Distance-based models -- 5.5 Paired comparison models - Babington Smith -- 5.5.1 Bradley-Terry /Mallows -- 5.5.2 Mallows' models -- 5.6 Multistage models -- 5.6.1 Plackett-Luce -- 5.6.2 Free and Â{u00A2}-component models -- 5. 7 Sufficient statistic models -- 5.8 Loglinear models -- 5.9 ANOVA-like models -- 5.10 Nested orthogonal contrast models -- 5.10.1 The free model -- 5.10.2 The Â{u00A2} model -- 5.10.3 Contingency table models -- 5.11 Unfolding models -- 5.12 Generalizing the models
  • 5.13 Some axiomatics -- 5.13.1 Luce's choice axiom -- 5.13.2 Unidimensionality, unimodality, and consensus -- 5.14 Likelihood methods and exponential families -- 5.4.1 The likelihood function and Fisher information -- 5.1,/.2 Maximum likelihood estimation -- 5.14.3 Likelihood ratio tests -- 5.14.4 Exponential families -- 5.15 Exercises -- Chapter 6 Distance-Based Models -- 6.1 Introduction -- 6.2 Fitting the models: Known mode -- 6.2.1 Kendall -- 6.2.2 Cayley -- 6.2.3 Hamming -- 6.3 Unknown mode - Likelihood -- 6.4 Unknown mode - Bayesian -- 6.5 Asymptotics as m --+ oo -- 6.5.1 Kendall -- 6.5.2 Cayley -- 6.5.3 Hamming -- 6.5.4 Maximum -- 6.6 Assessing fit -- 6.6.1 Kendall -- 6.6.2 Hamming and Cayley -- 6.7 Exercises -- Chapter 7 Babington Smith, Phi-Models, and Inversions -- 7.1 Introduction -- 7.2 Babington Smith -- 7.3 Contrast 4J models -- 7.4 Bradley-Terry/Mallows and Spearman's distance models -- 7.4.1 Bradley-Terry /Mallows -- 7.4.2 Submodels of Bradley-Terry /Mallows, including Spearman -- 7.4.3 Between Babington Smith and Bradley-Terry /Mallows -- 7.5 Basic results for orthogonal contrast 4J models -- 7.6 Details for the orthogonal contrast 4J models -- 7.6.1 Preliminaries -- 7.6.2 Null distribution for Kendall -- 7.6.3 Non-null distribution for Phi, Mallows, and Kendall -- 7.6.4 Decomposing Mallows' 4J model -- Proofs of Theorems 6.3 and 6.5 -- 7.7 Examples of orthogonal contrast models -- 7.8 Mixed orthogonal contrastjBabington Smith models -- 7.9 Multistage models and patterns of ties -- 7.9.1 Patterns of ties -- 7 .9.2 Mallows' ̃model for tied ran kings -- 7.9.3 Multistage models: -̃component -- 7.10 Free models and contingency tables -- 7.11 Inversion models -- 7.12 Exercises -- Chapter 8 Plackett-Luce, Logistic, and Vase Models -- 8.1 The first-order model -- 8.2 Extended vase models: No interaction -- 8.3 Extended Plackett models
  • 8.4 q-permutations -- Chapter 9 Marginal and ANOVA-Type Loglinear Models -- 9.1 Introduction -- 9.2 Submodels of the Marginals model -- 9.3 Extended Marginals models -- 9.4 ANOVA-type loglinear models -- 9.5 Paired and multisample models -- Chapter 10 Latent Class and Unfolding Models -- 10.1 Introduction -- 10.2 Latent class models -- 10.3 The EM algorithm for latent class models -- 10.4 Unidimensional unfolding models -- 10.5 Exercise -- Chapter 11 Tied, Partial, and Incomplete Rankings -- 11.1 Introduction -- 11.1.1 Tied rankings -- 11.1.2 Rankings of subsets: Balanced incomplete block designs -- 11.2 Descriptive statistics -- 11.3 Tests of uniformity -- 11.4 Tied rankings -- 11.4.1 Marginals and Means -- 11.4.2 Pairs -- 11.4.3 Distances -- 11.5 Rankings of subsets: Balanced incomplete block designs -- 11.5.1 Marginals and Means -- Hamming's and Spearman's distances -- 11.5.2 Pairs and Kendall's distance -- 11.6 Comparing samples -- 11.7 Models -- 11.7.1 Thurstonian models -- 11.7.2 Plackett-Luce and vase models -- 11.7.3 Babington Smith -- 11.7.4 Orthogonal contrast Â{u00A2}models: Tied rankings -- 11.7.5 Orthogonal contrast Â{u00A2}models: Subsets -- 11.7 .6 Exponential family models -- 11.7.7 Coefficients and comparing populations -- 11.8 Exercises -- Chapter 12 Appendix -- 12.1 Some linear algebra -- 12.1.1 Eigenvalues and eigenvectors -- 12.2 Means and covariances for vectors and matrices -- 12.2.1 Definitions -- 12.2.2 Kronecker products -- 12.3 Normality and chi-squares -- 12.4 Some asymptotics -- 12.4.1 Central limit theorem -- 12.4.2 Convergence in probability -- Bibliography -- Author Index -- Subject Index
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9781482252491&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4415431'}
Edition
1st ed.
Extent
1 online resource (345 pages)
Form of item
online
Isbn
9781482252491
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...