Coverart for item
The Resource Advances in Metallic Biomaterials : Processing and Applications

Advances in Metallic Biomaterials : Processing and Applications

Label
Advances in Metallic Biomaterials : Processing and Applications
Title
Advances in Metallic Biomaterials
Title remainder
Processing and Applications
Creator
Contributor
Subject
Language
eng
Summary
This book covers the latest advances in processing techniques for producing metallic biomaterial implants. It also discusses recent developments in surface modifications using bioactive ceramics and blood-compatible polymers, as well as the adhesive strength of bioactive surface layers, before introducing the practical applications of metallic biomaterials in the fields of surgery and dentistry. As such, the book provides an essential reference guide for researchers, graduate students and clinicians working in the fields of materials, surgery, dentistry, and mechanics. Mitsuo Niinomi, PhD, D.D.Sc., is a Professor at the Institute for Materials Research, Tohoku University, Japan Takayuki Narushima, PhD, is a Professor at the Department of Materials Processing, Tohoku University, Japan Masaaki Nakai, PhD, is an Associate Professor at the Institute for Materials Research, Tohoku University, Japan
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Springer Series in Biomaterials Science and Engineering Ser.
Series volume
v.4
Advances in Metallic Biomaterials : Processing and Applications
Label
Advances in Metallic Biomaterials : Processing and Applications
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=2095806
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Contents -- Contributors -- Part I: Processing Techniques -- Chapter 1: Additive Manufacturing Technology for Orthopedic Implants -- 1.1 Introduction -- 1.2 Additive Manufacturing -- 1.2.1 Selective Laser Melting -- 1.2.2 Electron Beam Melting -- 1.3 Processed Material -- 1.3.1 Co-Cr Alloy -- 1.3.2 Ti-6Al-4V Alloy -- 1.3.3 Ti-15Zr-4Nb-4Ta Alloy -- 1.4 Applications -- 1.4.1 Customized Implants -- 1.4.2 Porous Metallic Biomaterial -- 1.4.3 Implant with Designed Porous Surface -- 1.5 Future Developments -- References -- Chapter 2: Metal Injection Molding (MIM) Processing -- 2.1 Introduction -- 2.2 Metal Injection Molding -- 2.2.1 MIM Process -- 2.2.2 Biomedical Applications -- 2.2.3 Titanium Alloys Fabricated by MIM -- 2.3 Static Mechanical Properties of Ti Alloys Fabricated by MIM -- 2.3.1 Effect of Oxygen Content in Ti-6Al-4V Compacts -- 2.3.1.1 Experimental Procedures -- 2.4 Results and Discussion -- 2.4.1 Ti-6Al-7Nb -- 2.4.1.1 Experimental Procedure -- 2.4.1.2 Results and Discussion -- 2.4.2 Summary -- 2.5 Fatigue Properties of Ti Alloys Fabricated by MIM -- 2.5.1 Materials -- 2.5.2 Fatigue Testing -- 2.5.3 Results and Discussion -- 2.5.3.1 Pure Ti -- 2.5.3.2 Ti-6Al-4V -- 2.5.3.3 Ti-6Al-4V-4Cr -- 2.5.3.4 Ti-6Al-4V-0.03B -- 2.5.3.5 Discussion -- 2.5.4 Summary -- 2.6 Conclusion -- References -- Chapter 3: Application of Smart Hot Forging Technique in Producing Biomedical Co-Cr-Mo Artificial Implants -- 3.1 Introduction -- 3.2 Friction Correction and Adiabatic Correction -- 3.2.1 Friction Coefficient -- 3.2.2 Friction Correction -- 3.3 Adiabatic Correction -- 3.4 Processing Map -- 3.5 Biomedical Co-Cr-Mo Artificial Implants Produced by Smart Hot Forging Technique -- References -- Chapter 4: Electroforming as a New Method for Fabricating Degradable Pure Iron Stent -- 4.1 Introduction -- 4.2 Basics of Electroforming
  • 4.3 Industrial Applications -- 4.4 Electroforming of Pure Iron -- 4.5 Electroforming of Binary and Ternary Alloy -- 4.6 Microtube Fabrication -- 4.7 Advantages and Disadvantages of Electroforming -- 4.8 Degradation Behaviour and Biocompatibility Aspects of Electroformed Iron -- 4.8.1 Initial Degradation -- 4.8.2 Hydroxide Layer Formation -- 4.8.3 Pit Formation -- 4.8.4 Calcium/Phosphorus Layer Formation -- 4.8.5 Degradation and Layer Disintegration -- 4.9 Future Perspective -- 4.10 Conclusion -- References -- Part II: Surface Modification -- Chapter 5: Bioactive Ceramic Coatings -- 5.1 Introduction -- 5.2 Bioactive Ceramic Coatings -- 5.2.1 Hydroxyapatite -- 5.2.2 Other Calcium Phosphates -- 5.2.3 Calcium Silicates -- 5.3 Bioactive Glass Coatings -- 5.3.1 Silicate-Based Glasses -- 5.3.2 Phosphate-Based Glasses -- 5.4 Oxide Modification of Ti and Its Alloys -- 5.4.1 Chemical Treatments -- 5.4.2 Anodic Oxidation -- 5.4.3 Sol-Gel Coatings -- 5.5 Summary -- References -- Chapter 6: Biofunctionalization of Metals with Polymers -- 6.1 Introduction -- 6.2 Immobilization of Poly(ethylene glycol) -- 6.2.1 Chemical Immobilization -- 6.2.2 Electrodeposition -- 6.3 Immobilization of Biomolecules -- 6.3.1 Immobilization of Biomolecules -- 6.3.2 Peptide -- 6.3.3 Proteins and Collagen -- 6.3.4 Hydrogel and Gelatin -- 6.4 Other Polymer Coatings -- 6.4.1 Bonding of Polymers with Metals Through Silane-Coupling Agent -- 6.4.2 Polymers Condensed in Porous Titanium -- 6.5 Conclusions -- References -- Chapter 7: Adhesive Strength of Bioactive Surface Layer -- 7.1 Introduction -- 7.2 Materials and Specimens -- 7.3 Experimental Procedure of Measuring Bond Strength Between Ti-Alloy and HAp -- 7.4 Bond Strength Between Ti-Alloy and HAp -- 7.5 Observation of Peeled Surface (Fracture Surface) -- 7.6 Surface Treatment for Improving the Bone Compatibility -- 7.7 Summary
  • References -- Chapter 8: Surface Improvement for Biocompatibility of Biomedical Ti Alloy by Dealloying in Metallic Melt -- 8.1 Introduction -- 8.1.1 Conventional Dealloying Method -- 8.1.2 Dealloying in a Metallic Melt -- 8.2 Porous Ü-Ti and beta-Ti Alloy Prepared by Dealloying with a Metallic Melt -- 8.2.1 Ü-Ti [8] -- 8.2.2 beta-Ti Alloy [9] -- 8.3 Surface Improvement of Biomedical Ti Alloys by Dealloying with a Metallic Melt -- 8.3.1 Ni-Ti (Nitinol) [24] -- 8.3.1.1 Dealloying Treatment in a Metallic Melt -- 8.3.1.2 Oxidization Treatment in Air -- 8.3.1.3 Phase and Morphology -- 8.3.1.4 Thickness and Composition Profile -- 8.3.1.5 Evaluation of Ni and Ti Ion Release Behavior in Simulated Body Fluid -- 8.3.1.6 Effect of Oxidization on the Ion Release -- 8.4 Summary -- References -- Chapter 9: Functionally Graded Metallic Biomaterials -- 9.1 Functionally Graded Materials (FGMs) for Biomedical Applications -- 9.2 Ti/Biodegradable-Polymer FGMs for Bone Tissue Fabricated by SPS Method [14] -- 9.3 Continuous Graded Composition in Ti-ZrO2 Bio-FGMs Fabricated by Mixed-Powder Pouring Method -- 9.4 White Ceramic Coating on Ti-29Nb-13Ta-4.6Zr Alloy for Dental Application -- 9.5 Al-Based FGMs Containing TiO2 Nanoparticles with Antibacterial Activity by a Centrifugal Mixed-Powder Method -- 9.6 Magnetic Graded Materials by Inhomogeneous Heat Treatment of SUS304 Stainless Steel -- 9.7 Conclusions -- References -- Part III: Applications -- Chapter 10: Metallic Biomaterials in Orthopedic Surgery -- 10.1 Introduction -- 10.2 Fracture Fixation -- 10.2.1 Mechanical Stiffness of Metal Implants for Bony Fusion -- 10.2.2 Stress-Shielding Effect -- 10.2.3 Biocompatibility -- 10.2.4 Artifacts and Heat Production in MRI (Magnetic Resonance Image) Scan -- 10.3 Artificial Joints -- 10.3.1 Indications of Joint Replacement -- 10.3.2 Total Hip Arthroplasty
  • 10.3.3 Prosthetic Loosening -- 10.3.4 PMMA and Surface Modifications -- 10.3.5 Minimally Invasive Surgery (MIS) -- 10.4 Spinal Reconstruction -- 10.4.1 Spinal Instrumentation Surgery -- 10.4.2 Pedicle Screw System -- 10.4.3 Vertebral Spacers and Intervertebral Cages -- 10.4.4 Innovative Technology -- 10.5 Conclusions -- References -- Chapter 11: Stents: Functions, Characteristics, and Materials -- 11.1 Introduction -- 11.2 Structures and Functions of Stents -- 11.3 Balloon-Expandable Stents -- 11.4 Self-Expandable Stents -- 11.5 Drug-Eluting Stents (DES) -- 11.6 Bioabsorbable Stents -- 11.6.1 Emergence of the Research and Development for Bioabsorbable Stents -- 11.6.2 Magnesium Alloy -- 11.6.3 Iron and Its alloy -- 11.6.4 Zinc -- 11.6.5 Biodegradable Polymers -- 11.7 Summary and Perspective -- References -- Chapter 12: Dental Metallic Materials -- 12.1 Introduction -- 12.2 Intraoral Environment [1] -- 12.3 Treatment Methods [1] -- 12.3.1 Crown Restorations -- 12.3.2 Prosthodontic Treatments for Missing Teeth -- 12.3.3 Dental Implants -- 12.3.4 Orthodontic Treatments -- 12.3.5 Other Treatments -- 12.4 Types and Features of Dental Metallic Materials -- 12.4.1 Dental Casting Alloys -- 12.4.1.1 Dental Casting Gold Alloys -- 12.4.1.2 Dental Casting Silver Alloys -- 12.4.1.3 Other Dental Casting Alloys -- 12.4.2 Alloys for Porcelain Bonding -- 12.4.2.1 Gold Alloys for Porcelain Bonding -- 12.4.2.2 Palladium Alloys for Porcelain Bonding -- 12.4.3 Brazing Metals -- 12.4.3.1 Gold Solder -- 12.4.3.2 Silver Solder -- 12.5 Recent Progress of Research About Ag-Pd-Cu-Au Alloys -- 12.5.1 Unique Hardening Behavior of Ag-20Pd-12Au-14.5Cu Alloy -- 12.5.2 Factors for Hardening of Ag-20Pd-12Au-14.5Cu Alloy -- 12.6 Summary -- References
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783662468425&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4390782'}
Extent
1 online resource (285 pages)
Form of item
online
Isbn
9783662468425
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...