Coverart for item
The Resource Advanced Technologies in Modern Robotic Application

Advanced Technologies in Modern Robotic Application

Label
Advanced Technologies in Modern Robotic Application
Title
Advanced Technologies in Modern Robotic Application
Creator
Contributor
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Advanced Technologies in Modern Robotic Application
Label
Advanced Technologies in Modern Robotic Application
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4529735
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Contents -- 1 Introduction of Robot Platforms and Relevant Tools -- 1.1 Robot Platforms -- 1.1.1 Baxter® Robot -- 1.1.2 iCub Robot -- 1.2 Visual Sensors and Haptic Devices -- 1.2.1 Microsoft Kinect Sensor -- 1.2.2 Point Grey Bumblebee2 Stereo Camera -- 1.2.3 Leap Motion Sensor -- 1.2.4 SensAble Omni -- 1.2.5 Novint Falcon Joystick -- 1.3 Software Toolkits -- 1.3.1 MATLAB Robotics Toolbox -- 1.3.2 Official SDK of Leap Motion -- 1.4 V-REP Based Robot Modeling and Simulations -- 1.4.1 V-REP Simulator -- 1.4.2 Examples of V-REP Simulation -- 1.5 ROS Based Robot System Design -- 1.5.1 Main Characteristics of ROS -- 1.5.2 ROS Level Concepts -- References -- 2 Robot Kinematics and Dynamics Modeling -- 2.1 Kinematics Modeling of the Baxter® Robot -- 2.1.1 Introduction of Kinematics -- 2.1.2 Kinematics Modeling Procedure -- 2.1.3 Experimental Tests on Kinematics Modeling -- 2.2 Lagrange--Euler Dynamics Modeling of the Baxter Robot -- 2.2.1 Introduction of Dynamics -- 2.2.2 Dynamics Modeling Procedure -- 2.2.3 Experimental Studies -- References -- 3 Intelligent Control of Robot Manipulator -- 3.1 Dual-Adaptive Control of Bimanual Robot -- 3.1.1 Preliminaries -- 3.1.2 Adaptive Control -- 3.1.3 Simulation Studies -- 3.2 Biomimetic Hybrid Adaptive Control of Bimanual Robot -- 3.2.1 Preliminaries and Problem Formulation -- 3.2.2 Adaptive Bimanual Control with Impedance and Force -- 3.2.3 Adaptive Control with Internal Interaction -- 3.2.4 Adaptive Control with Both Internal and External Interaction -- 3.3 Optimized Motion Control of Robot Arms with Finite Time Tracking -- 3.3.1 Robot Dynamics and Optimal Reference Model -- 3.3.2 Adaptive Model Reference Control Design -- 3.4 Discrete-Time Adaptive Control of Manipulator with Uncertain Payload -- 3.4.1 Problem Formulation -- 3.4.2 Discrete-Time Adaptive Control -- 3.4.3 Simulation Studies
  • References -- 4 Object Detection and Tracking -- 4.1 Introduction of Machine Vision Recognition -- 4.1.1 Tools for Machine Vision -- 4.1.2 Blob/Edge Detection -- 4.1.3 Feature Point Detection, Description, and Matching -- 4.2 JavaScript Object Notation (JSON)-Based Vision Recognition Framework -- 4.2.1 JSON in Image Labels -- 4.2.2 JSON in Application Tuning -- 4.2.3 Vision Recognition Framework -- 4.3 Deep Learning-Based Object Recognition -- 4.3.1 Logistic Regression-Based Classification -- 4.3.2 Convolutional Neural Network (CNN)-Based Classification -- 4.3.3 Detection -- 4.4 Tracking a Single Moving Object -- 4.4.1 Data Collection -- 4.4.2 Recognition Algorithm -- 4.4.3 Analysis of Results -- 4.5 Tracking Multiple Moving Objects -- 4.5.1 PSO Algorithms -- 4.5.2 Objective Function of the Irregular Shape Target -- 4.5.3 Locating Multiple Targets by Adaptive PSO Method -- 4.5.4 Tracking Multiple Targets by Swarm Optimization -- 4.5.5 Experiments Studies -- References -- 5 Visual Servoing Control of Robot Manipulator -- 5.1 Introduction of Visual Servoing -- 5.2 Kinect Sensor Based Visual Servoing for Human--Robot Cooperation -- 5.2.1 System Architecture -- 5.2.2 Experimental Equipments -- 5.2.3 Implementation with V-REP -- 5.2.4 Experiment Studies -- 5.3 Visual Servoing Control Using Stereo Camera -- 5.3.1 System Integration -- 5.3.2 Preprocessing -- 5.3.3 Algorithm Implementation -- 5.3.4 Results -- References -- 6 Robot Teleoperation Technologies -- 6.1 Teleoperation Using Body Motion Tracking -- 6.1.1 Introduction of Robot Teleoperation -- 6.1.2 Construction of Teleoperation System -- 6.1.3 Design Principles -- 6.1.4 Experiment Study -- 6.2 Fuzzy Inference Based Adaptive Control for Teleoperation -- 6.2.1 System Modeling and Problem Formulation -- 6.2.2 Fuzzy Inference Based Control -- 6.2.3 Simulation Studies
  • 6.3 Haptic Interaction Between Human and Robot -- 6.3.1 Tools Selection and System Description -- 6.3.2 Implementation with CHAI3D -- 6.3.3 Implementation with MATLAB -- 6.4 Teleoperation Using Haptic Feedback -- 6.4.1 System Description -- 6.4.2 Workspace Mapping -- 6.4.3 Command Strategies -- 6.4.4 Experiment Studies -- References -- 7 Obstacle Avoidance for Robot Manipulator -- 7.1 Introduction of Kinematic Redundancy -- 7.2 Shared Controlled Teleoperation with Obstacle Avoidance -- 7.2.1 System Components -- 7.2.2 Preprocessing -- 7.2.3 Obstacle Avoidance Strategy -- 7.2.4 Experiment Studies -- 7.3 Robot Self-Identification for Obstacle Avoidance -- 7.3.1 Kinect® Sensor and 3D Point Cloud -- 7.3.2 Self-Identification -- 7.3.3 Collision Predication -- 7.3.4 Experiments Studies -- References -- 8 Human--Robot Interaction Interface -- 8.1 Introduction of Human--Robot Interfaces -- 8.2 Hand Gesture-Based Robot Control Using Leap Motion -- 8.2.1 Hardware and Software -- 8.2.2 Control System -- 8.2.3 Experiment and Result -- 8.3 Hand Gesture-Based Control with Parallel System -- 8.3.1 Platform and Software -- 8.3.2 Hand Gesture Recognition System Based on Vision for Controlling the iCub Simulator -- 8.3.3 Teleoperation Platform and Parallel System -- 8.4 BCI Controlled Mobile Robot Using Emotiv Neuroheadset -- 8.4.1 EEG and Brain--Computer Interface (BCI) System -- 8.4.2 Experimental System -- 8.4.3 Training and Control Strategy -- 8.4.4 Results and Discussions -- 8.5 EEG Signal-Based Control of Robot Manipulator -- 8.5.1 Hardware and Software -- 8.5.2 Experimental Methodology -- 8.5.3 Discussion -- References -- 9 Indoor/Outdoor Robot Localization -- 9.1 Localization with Wireless Sensor Networks -- 9.1.1 Problem Formulation -- 9.1.2 Algorithm Design -- 9.1.3 Theoretical Analysis -- 9.1.4 Simulation Studies
  • 9.2 RFID-based Indoor Localization Using Interval Kalman Filter -- 9.2.1 Interval Kalman Filter for RFID Indoor Positioning -- 9.2.2 Mathematical Model and Positioning Algorithm -- 9.2.3 Simulation Studies -- 9.3 Particle Filter-Based Simultaneous Localization and Mapping (PF-SLAM) -- 9.3.1 Model of Particle Filter (PF) SLAM Using Landmarks -- 9.3.2 Particle Filter Matching Algorithm -- 9.3.3 Landmark Set Selection Method -- 9.3.4 Advanced Position Calculation Method -- 9.3.5 Experiment Study -- 9.4 Integrated INS/VMS Navigation System -- 9.4.1 Introduction of INS/VMS Navigation System -- 9.4.2 Analysis of VMS Errors -- 9.4.3 Loosely Coupled INS/VMS -- 9.4.4 Tightly Coupled INS/VMS -- 9.4.5 Experiment Study -- References -- 10 Multiagent Robot Systems -- 10.1 Introduction to Multiagent System -- 10.2 Optimal Multirobot Formation -- 10.2.1 Concepts and Framework of Multirobot Formation -- 10.2.2 Minimum-Time Three-Robot Line Formation -- 10.2.3 Simulation Results -- 10.3 Multirobot Cooperative Pursuit -- 10.3.1 Preliminary Concepts -- 10.3.2 Hunting Strategy -- 10.3.3 Simulation Study -- 10.4 Multirobot Cooperative Lifting -- 10.4.1 Problem Formation -- 10.4.2 PD Feedforward Compensation Control -- 10.4.3 Adaptive Control -- References -- 11 Technologies for Other Robot Applications -- 11.1 Investigation of Robot Kicking -- 11.1.1 Kinematics -- 11.1.2 Ballistics -- 11.1.3 Structure of the Robot -- 11.1.4 MATLAB Simulation -- 11.1.5 Implementation and Tests -- 11.2 Reference Trajectory Adaptation -- 11.2.1 Interaction Dynamics -- 11.2.2 Adaptation Model -- 11.2.3 Convergence Analysis -- 11.2.4 Simulation Studies -- References
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9789811008306&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4385343'}
Extent
1 online resource (428 pages)
Form of item
online
Isbn
9789811008306
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...