Coverart for item
The Resource Advanced Manufacturing Technologies : Modern Machining, Advanced Joining, Sustainable Manufacturing

Advanced Manufacturing Technologies : Modern Machining, Advanced Joining, Sustainable Manufacturing

Label
Advanced Manufacturing Technologies : Modern Machining, Advanced Joining, Sustainable Manufacturing
Title
Advanced Manufacturing Technologies
Title remainder
Modern Machining, Advanced Joining, Sustainable Manufacturing
Creator
Subject
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Materials Forming, Machining and Tribology Ser
Advanced Manufacturing Technologies : Modern Machining, Advanced Joining, Sustainable Manufacturing
Label
Advanced Manufacturing Technologies : Modern Machining, Advanced Joining, Sustainable Manufacturing
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4851844
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Related Items
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Preface -- Contents -- Modern Machining -- 1 Fabrication of Micro-cutting Tools for Mechanical Micro-machining -- Abstract -- 1.1 Introduction -- 1.2 Processes Used for Fabrication of Micro-cutting Tools -- 1.2.1 Grinding -- 1.2.2 Electro-Discharge Machining (EDM) and Its Variants -- 1.2.2.1 Micro-Electro-Discharge Grinding (æ-EDG) -- 1.2.2.2 Wire Electro-Discharge Grinding (WEDG) -- 1.2.3 Laser Beam Machining -- 1.2.4 Focused Ion Beam Machining (FIB) -- 1.3 Fabrication of End Mill Tool by Compound Machining of EDM Milling and Die-Sinking EDM -- 1.4 Summary -- Acknowledgements -- References -- 2 Machining of Glass Materials: An Overview -- Abstract -- 2.1 Glass and Its Machining -- 2.1.1 Introduction -- 2.1.2 Challenges in Machining of Glass -- 2.2 Cutting Mechanisms -- 2.2.1 Ductile Mode Machining -- 2.2.2 Material Removal Mechanism in Glass -- 2.3 Machining of Glass -- 2.3.1 Conventional Machining -- 2.3.1.1 Turning -- 2.3.1.2 Grinding -- 2.3.1.3 Micro-Milling -- 2.3.2 Nonconventional Machining -- 2.3.2.1 Ultrasonic Machining (USM) -- 2.3.2.2 Abrasive Jet Machining (AJM) -- 2.3.2.3 Electrochemical Discharge Machining (ECDM) -- 2.3.2.4 Electrolytic in Process Dressing (ELID) -- 2.3.2.5 Laser Machining -- 2.4 Summary -- References -- 3 Thermal-Assisted Machining of Titanium Alloys -- Abstract -- 3.1 Introduction -- 3.2 Thermal-Assisted Machining Techniques -- 3.2.1 Laser-Assisted Machining -- 3.2.2 Plasma-Assisted Machining -- 3.2.3 Induction-Assisted Machining -- 3.3 Summary -- References -- 4 Abrasive Water Jet Machining of Composite Materials -- Abstract -- 4.1 Introduction -- 4.2 Composite Materials -- 4.3 Problems in Machining of Composites -- 4.4 Abrasive Water Jet Machining -- 4.4.1 Abrasive Water Jet Machine -- 4.4.2 Cutting Mechanism and Parameters -- 4.4.3 Important Process Parameters -- 4.4.4 Advantages, Limitations and Applications
  • 4.4.4.1 Advantages of Abrasive Water Jet Machining Process -- 4.4.4.2 Limitations of Abrasive Water Jet Machining Process -- 4.4.4.3 Applications of Abrasive Water Jet Machining -- 4.5 Machinability Study of Natural Filler/Fibre-Reinforced Polymer Composite Using Abrasive Water Jet Machining Process -- 4.5.1 Background -- 4.5.2 Experimental Procedure -- 4.5.3 Results and Discussions -- 4.6 Summary -- References -- Advanced Repair and Joining -- 5 Advanced Joining and Welding Techniques: An Overview -- Abstract -- 5.1 Introduction -- 5.2 Advanced Fastening and Bonding Processes -- 5.2.1 Hybrid Bonded Fastened Joints -- 5.2.2 Adhesive Injection Fastening -- 5.2.3 Clinching -- 5.3 Advanced Arc Welding Processes -- 5.3.1 Activated Flux Arc Welding Processes -- 5.3.1.1 Activated Flux Tungsten Inert Arc Welding -- 5.3.1.2 Other Activated Arc Welding Processes -- 5.3.2 Cold Metal Transfer Arc Welding -- 5.3.3 Pulse Arc Welding -- 5.3.4 Double Electrode Arc Welding -- 5.3.4.1 Gas Tungsten Arc Welding -- 5.3.4.2 Pulse Gas Metal Arc Welding -- 5.3.4.3 Plasma-GMAW and Plasma-GTAW -- 5.3.4.4 Submerged Arc Welding-GMAW -- 5.3.5 Hot Wire Arc Welding -- 5.4 Advanced Beam Welding Processes -- 5.4.1 Laser Beam Welding -- 5.4.1.1 Ultra Narrow Gap Laser Welding -- 5.4.1.2 Laser Beam Welding for Plastics -- 5.4.1.3 Laser Beam Welding for Dissimilar Materials -- 5.4.1.4 Laser Welding for Repair Applications -- 5.4.1.5 Repair Using Laser Powder Welding -- 5.4.2 Electron Beam Welding -- 5.4.2.1 Electron Beam Welding for Repair Applications -- 5.4.2.2 Surface Modification Through Electron Beam Welding -- 5.4.2.3 Non-vacuum Electron Beam Welding -- 5.5 Sustainable Welding Processes -- 5.5.1 Friction Stir Welding -- 5.5.1.1 Friction Stir Spot Welding -- 5.5.1.2 Friction Bit Joining -- 5.5.1.3 Friction Stir Extrusion -- 5.5.1.4 Friction Crush Welding
  • 5.5.2 Magnetic Pulse Welding -- 5.5.3 Ultrasonic Welding -- 5.5.3.1 Ultrasonic Seam Welding -- 5.5.3.2 Ultrasonic Torsion Welding -- 5.6 Micro-Nano Joining -- 5.6.1 Fusion Micro-Welding -- 5.6.2 Solid State Micro Bonding and Welding -- 5.6.3 Nano-Joining -- 5.7 Hybrid Welding Processes -- 5.7.1 Laser Assisted Hybrid Welding -- 5.7.2 Hybrid Arc Welding -- 5.7.3 Hybrid Friction Stir Welding -- 5.7.3.1 Electrically Assisted FSW -- 5.7.3.2 Laser Assisted FSW -- 5.7.3.3 Arc Assisted FSW -- 5.7.3.4 Ultrasonic Energy Assisted FSW -- 5.7.3.5 Cooling Enhanced FSW -- 5.8 Summary -- References -- 6 Laser-Based Repair of Damaged Dies, Molds, and Gears -- Abstract -- 6.1 Introduction -- 6.2 Types of Damages and Their Causes -- 6.2.1 Catastrophic Damages -- 6.2.2 Manufacturing Damages -- 6.2.3 Operational Damages -- 6.3 Repair Process Sequence -- 6.4 Repair Processes -- 6.4.1 Arc-Based Repair Processes -- 6.4.2 Plasma-Based Repair Processes -- 6.4.3 Laser-Based Repair Process -- 6.4.3.1 Laser-Based Repair of Dies and Molds -- 6.4.3.2 Laser-Based Repair of Gears -- 6.4.4 Electron Beam-Based Repair Process -- 6.4.5 Comparative Study -- 6.5 Details of Laser-Based Repair Process -- 6.5.1 Types of Lasers Used in Repair Process -- 6.5.2 Process Principle and Case Studies -- 6.5.2.1 Carbon Dioxide Laser -- Case Study -- 6.5.2.2 Nd:YAG Laser -- Case Study -- 6.5.2.3 Yb:YAG Laser -- Case Study -- 6.5.3 Form of Deposition Material -- 6.6 Summary -- References -- 7 Friction Stir Welding-An Overview -- Abstract -- 7.1 Introduction -- 7.2 Equipment and Working Principle -- 7.3 Mechanism of Friction Stir Weld Formation -- 7.3.1 Role of FSW in Material Flow -- 7.3.2 Evolution of Microstructure at Weld Zone -- 7.3.2.1 Nugget Zone -- 7.3.2.2 Thermo-Mechanically Affected Zone -- 7.3.2.3 Heat Affected Zone -- 7.3.2.4 Unaffected Base Material -- 7.4 Process Parameters of FSW
  • 7.4.1 FSW Tool -- 7.4.1.1 Tool Materials -- 7.4.1.2 Tool Geometry -- 7.5 Mechanical Properties -- 7.5.1 Hardness -- 7.5.2 Tensile Properties -- 7.6 FSW Defects -- 7.7 Applications -- 7.8 Summary -- References -- 8 Ultrasonic Spot Welding-Low Energy Manufacturing for Lightweight Fuel Efficient Transport Applications -- Abstract -- 8.1 Introduction -- 8.2 High Power Ultrasonic Spot Welding -- 8.2.1 Applications -- 8.2.2 Principles -- 8.2.3 Mechanism of Bonding -- 8.2.4 Heat Generation and Temperature Evolution -- 8.2.5 Power and Vibration Evolution -- 8.2.6 Similar Ultrasonic Spot Welding -- 8.2.7 Dissimilar Ultrasonic Spot Welding -- 8.2.8 Finite Element Process Modelling -- 8.3 Summary -- References -- Sustainable Manufacturing -- 9 Perspectives on Green Manufacturing -- Abstract -- 9.1 Introduction -- 9.2 Taxonomy Across Researchers -- 9.2.1 Sustainable Production (SP) -- 9.2.2 Clean Manufacturing (CM) -- 9.2.3 Cleaner Production (CP) -- 9.2.4 Environmentally Conscious Manufacturing (ECM) -- 9.2.5 Green Manufacturing (GM) -- 9.2.6 Environmentally Responsible Manufacturing (ERM) -- 9.2.7 Environmentally Benign Manufacturing (EBM) -- 9.2.8 Sustainable Manufacturing (SM) -- 9.3 Background of Research on Green Manufacturing -- 9.4 Motivations for Green Manufacturing -- 9.4.1 Current Legislation -- 9.4.2 Future Legislation -- 9.4.3 Incentives -- 9.4.4 General Awareness -- 9.4.5 Economical Concerns -- 9.4.6 Competitiveness -- 9.4.7 Customer Demand -- 9.4.8 Supply Chain Pressure -- 9.4.9 Top Management Commitment -- 9.4.10 Company Reputation -- 9.4.11 Technology -- 9.4.12 Organizational Resources -- 9.5 Hindrances to Green Manufacturing -- 9.5.1 Weak Legislation -- 9.5.2 Low Enforcement -- 9.5.3 Uncertain Future Legislation -- 9.5.4 Lack of Awareness -- 9.5.5 High Short-Term Costs -- 9.5.6 Uncertain Benefits -- 9.5.7 Low Customer Demand -- 9.5.8 Trade-Offs
  • 9.5.9 Low Top Management Commitment -- 9.5.10 Lack of Organizational Resources -- 9.5.11 Technological Risk -- 9.5.12 Lack of Awareness -- 9.6 Stakeholders of Green Manufacturing -- 9.6.1 Government -- 9.6.2 Employees -- 9.6.3 Consumers -- 9.6.4 Market -- 9.6.5 Media -- 9.6.6 Local Politicians -- 9.6.7 Suppliers -- 9.6.8 Trade Organizations -- 9.6.9 Environmental Advocacy Groups -- 9.6.10 Investors/Shareholders -- 9.7 Current International Status -- 9.8 Conclusions and Future Research Directions -- References -- 10 Experimental Investigation and Optimization on MQL-Assisted Turning of Inconel-718 Super Alloy -- Abstract -- 10.1 Introduction -- 10.2 Experimental -- 10.3 Results and Discussions -- 10.3.1 Regression Modelling -- 10.3.2 Analysis of Variance -- 10.3.3 Effect of Process Parameters -- 10.3.4 Optimization -- 10.4 Conclusion -- References -- 11 Dry and Near-Dry Electric Discharge Machining Processes -- Abstract -- 11.1 Introduction -- 11.1.1 Un-conventional Machining Processes -- 11.2 Electric Discharge Machining (EDM) -- 11.2.1 Principle of EDM -- 11.2.2 Applications of EDM -- 11.3 Classification of EDM -- 11.3.1 Conventional EDM -- 11.3.2 Powder Mixed EDM (PMEDM) -- 11.3.3 Dry and Near-Dry EDM -- 11.3.3.1 Process Parameters -- 11.3.3.2 Mechanism of Material Removal -- 11.3.3.3 Dielectric Mediums in Dry and Near-Dry EDM -- 11.4 Comparison of Dry, Near-Dry and Conventional EDM -- 11.5 Summary -- References -- 12 Laser Metal Deposition Process for Product Remanufacturing -- Abstract -- 12.1 Introduction -- 12.2 Introduction to Laser Metal Deposition Process -- 12.2.1 Working Principle of Laser Metal Deposition Process -- 12.2.2 Capabilities of Laser Metal Deposition Process for Repair and Remanufacturing -- 12.2.3 Review of the Past Work on Use of LMD Process for Repair and Remanufacturing
  • 12.3 A Case Study on Laser Metal Deposited Titanium Alloy Powder
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319560991&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4393490'}
Extent
1 online resource (294 pages)
Form of item
online
Isbn
9783319560991
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...