Coverart for item
The Resource Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties

Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties

Label
Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties
Title
Advanced High Strength Sheet Steels
Title remainder
Physical Metallurgy, Design, Processing, and Properties
Creator
Subject
Language
eng
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties
Label
Advanced High Strength Sheet Steels : Physical Metallurgy, Design, Processing, and Properties
Link
http://libproxy.rpi.edu/login?url=https://ebookcentral.proquest.com/lib/rpi/detail.action?docID=4091082
Publication
Copyright
Related Contributor
Related Location
Related Agents
Related Authorities
Related Subjects
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Foreword -- Acknowledgments -- Contents -- About the Author -- List of Abbreviations -- List of Symbols -- Chapter 1: Evolution of Strength of Automotive Steels to Meet Customer Challenges -- 1.1 Ancient History -- 1.2 Reviving Dual-Phase Steels -- 1.3 Development of AHSS -- 1.4 Nowadays -- 1.5 T̀̀hird Generatioń ́-- 1.5.1 Carbide-Free Bainitic Steel -- 1.5.2 Medium Mn Steels -- 1.5.3 QandP -- References -- Chapter 2: Main Features of Heat Treatment from Intercritical Region -- 2.1 Main Characteristics of Continuous Annealing/Coating Lines -- 2.2 Austenite Formation During Heating and Soaking of Low-Carbon Steel in the Intercritical Temperature Range -- 2.2.1 Nucleation of Austenite -- 2.2.1.1 Effect of Initial Microstructure -- 2.2.1.2 Effect of Heating Rate -- 2.2.2 Growth of Austenite -- 2.2.2.1 Effect of Steel Chemical Composition -- 2.2.2.2 Effect of Heating Temperature -- 2.2.2.3 Effect of Initial Microstructure -- 2.2.2.4 Effect of Heating Rate -- 2.3 Microstructural Changes in the Ferrite Constituent -- 2.3.1 Recrystallization of Ferrite -- 2.3.2 Precipitation of Dispersed Particles -- 2.4 Partitioning of Interstitial and Alloying Elements -- 2.5 Transformations of Austenite During Cooling from the Intercritical Region -- 2.5.1 Features of Transformations of Austenite During Cooling from the Intercritical Temperature Range -- 2.5.2 The Effect of Annealing Temperature in the Two-Phase Region -- 2.5.3 Effect of Cooling Rate -- 2.6 Obtaining of As-Rolled Dual-Phase Microstructure by Cooling of Deformed Austenite -- 2.7 Austempering Annealing Cycle -- 2.8 Tempering of Ferrite-Martensite Mixture -- 2.8.1 Tempering of Martensite -- 2.8.2 Tempering of Ferrite -- 2.8.3 Decomposition of Retained Austenite -- 2.9 Summary -- References -- Chapter 3: Effect of Structure on Mechanical Properties of Dual-Phase Steels
  • 3.1 Existing Models of the Tensile Behavior of Heterogeneous Materials -- 3.2 Strength Characteristics of Dual-Phase Steels -- 3.2.1 Resistance of Dual-Phase Microstructure to Microplastic Deformation -- 3.2.2 Yield Strength of Dual-Phase Steels -- 3.2.2.1 Effect of Volume Fraction of Martensite -- 3.2.2.2 Effect of Ferrite Grain Size -- 3.2.2.3 Effect of Conditions of Martensite Transformation -- 3.2.2.4 Effect of Martensite Dispersion -- 3.2.3 Tensile Strength -- 3.2.3.1 The Role of Ferrite Strength -- 3.2.3.2 Effects of Volume Fraction of Martensite and Its Carbon Content -- 3.2.3.3 Effect of Bainite -- 3.3 Strain Hardening of Dual-Phase Steels -- 3.3.1 Characteristics of Strain Hardening -- 3.3.2 Models of Strain Hardening of Dual-Phase Steels -- 3.3.3 Experimental Data on the Effects of Microstructure Parameters on Strain-Hardening Behavior of DP Steels -- 3.3.3.1 Effect of Volume Fraction, Sizes, and Morphology of Martensite Phase -- 3.3.3.2 Effect of Properties and Size of Ferrite Phase -- 3.3.3.3 Effect of Martensite Hardness -- 3.3.3.4 Effect of Bainite -- 3.3.3.5 Effect of Retained Austenite -- 3.4 The Ductile Properties of Dual-Phase Steels -- 3.4.1 Uniform Elongation -- 3.4.2 Total Elongation -- 3.4.3 Reduction of Area -- 3.5 Quench and Strain Aging -- 3.6 Tempering of Dual-Phase Steels -- 3.7 Fracture Behavior of Dual-Phase Steels -- 3.7.1 Theoretical Concepts of Fracture of Heterogeneous Materials -- 3.7.2 Microstructural Features Controlling Fracture Initiation in Dual-Phase Steels -- 3.7.3 Effect of Microstructure of DP Steel on Crack Propagation -- 3.7.4 Fatigue Resistance -- 3.7.5 Resistance of Dual-Phase Steels to Hydrogen Embrittlement -- 3.8 Summary -- References -- Chapter 4: The Effect of Chemical Composition on Formation of Ferrite-Martensite Structures and Mechanical Properties of Dual-... -- 4.1 Introduction
  • 4.2 Effect of Steel Composition on Processes During Heating in the Intercritical Temperature Range -- 4.2.1 Effect of Chemical Composition on the Volume of the Formed Austenite -- 4.2.2 Austenitization Kinetics -- 4.2.3 Austenite Morphology -- 4.2.4 Recrystallization of Ferrite and Ferrite Grain Size -- 4.2.5 Effective Carbon Content in Austenite and Its Homogeneity -- 4.3 Effect of Steel Composition on Austenite Transformation and Properties of the Formed Phases in Cooling from Ü+gamma Region -- 4.3.1 Hardenability of Austenite in Cooling from Intercritical Region -- 4.3.1.1 Carbon -- 4.3.1.2 Manganese -- 4.3.1.3 Silicon -- 4.3.1.4 Aluminum -- 4.3.1.5 Molybdenum -- 4.3.1.6 Chromium -- 4.3.1.7 Boron -- 4.3.1.8 V, Nb, Ti -- 4.3.2 Ferrite Solid Solution -- 4.3.3 Precipitation Hardening of Ferrite -- 4.3.4 Austenite Non-homogeneity -- 4.3.5 Martensite Transformation Temperature -- 4.4 Effect of Chemical Composition on Mechanical Properties of Dual-Phase Steels -- 4.4.1 Tensile Properties -- 4.4.1.1 Carbon -- 4.4.1.2 Manganese -- 4.4.1.3 Silicon -- 4.4.1.4 Aluminum -- 4.4.1.5 Chromium -- 4.4.1.6 Molybdenum -- 4.4.1.7 Boron -- 4.4.1.8 Niobium/Niobium Plus Titanium -- 4.4.1.9 Vanadium -- 4.4.1.10 Phosphorus -- 4.4.2 Effect of Steel Composition on Strain Aging and Tempering Behavior of DP Steels -- 4.5 Summary -- References -- Chapter 5: TRIP Steels -- 5.1 Introduction -- 5.2 TRIP Phenomenon and the Adaptation of Metallurgical Concept to Low-Alloyed Steels -- 5.3 Metallurgy of Manufacturing of TRIP Steels -- 5.3.1 Phase Transformations During Heat Treatment to Produce TRIP Steels -- 5.3.2 Adaptation of Heat Treatment for TRIP Steel Production to Modern Annealing and Galvanizing Lines -- 5.3.2.1 Effect of Initial Microstructure -- 5.3.2.2 Effect of Annealing Parameters -- 5.3.2.3 Effect of Isothermal Bainite Transformation (IBT)
  • 5.3.3 Hot-Rolled TRIP Steels -- 5.4 Relationship of Structure and Static Mechanical Behavior of TRIP Steels -- 5.4.1 Effect of Structure Parameters of TRIP Steels on the Balance of Tensile Strength and Ductility -- 5.4.2 Effect of Amount and Stability of Austenite on Strain Hardening of TRIP Steels -- 5.4.3 Evaluation of Austenite Stability -- 5.4.4 Factors that Control Austenite Stability -- 5.4.5 Bake Hardening of TRIP Steels -- 5.5 Effect of Steel Composition on Phase Transformations, Final Microstructure, and Mechanical Properties of TRIP Steels -- 5.5.1 Effect of Ferrite-Stabilizing Elements -- 5.5.2 Effects of Alloying Elements Enhancing Hardenability of Austenite -- 5.5.3 Effect of Microalloying -- 5.6 Fracture of TRIP Steels -- 5.6.1 Energy Absorption of TRIP Steels -- 5.6.2 Fatigue Behavior -- 5.6.3 Resistance to Hydrogen Embrittlement -- 5.7 Summary -- References -- Chapter 6: Complex Phase Steels -- 6.1 Introduction -- 6.2 Effect of Bainite on Hole Expansion of AHSS and C̀̀omplex Phasé ́Steels Concept -- 6.3 Microstructure-Properties Relationship of Complex Phase Steels -- 6.4 Adaptation of Processing Parameters to Obtain Bainite Fraction -- 6.4.1 Effect of Chemical Composition on Phase Transformation of Low-Carbon Steels During Isothermal Holding and Continuous Coo... -- 6.4.2 Effect of Processing Parameters -- 6.5 Effect of Alloying and Microalloying Elements on the Mechanical Properties of Bainite and the Contribution from Precipitat... -- 6.6 Summary -- References -- Chapter 7: Martensitic Sheet Steels -- 7.1 Introduction -- 7.2 Martensitic Grades for Roll Forming -- 7.2.1 Processing and Compositions of Annealed Martensitic Grades -- 7.2.2 As-Rolled Martensite -- 7.2.3 Effect of Martensite Tempering -- 7.3 Martensite Produced by Press Hardening -- 7.3.1 Basic Principles of Obtaining Martensite After Hot Stamping
  • 7.3.2 Development of Ultrahigh Strength Martensite for Press Hardening -- 7.3.3 Modification of Press-Hardening Technology -- 7.4 Susceptibility of Martensitic Grades to Delayed Fracture -- 7.5 Summary -- References -- Chapter 8: Candidates to AHSS of Third Generation: Steels with Carbide-Free Bainite -- 8.1 Introduction -- 8.2 Steels with Carbide-Free Bainite or TRIP Steels with Bainitic Ferrite: General Concept -- 8.3 Fundamentals of CFB Steel Processing: Factors Affecting the Kinetics of Bainitic Reaction -- 8.3.1 Effect of Temperature and Time of Isothermal Holding in Bainite Region -- 8.3.2 Effect of Alloying and Microalloying Elements -- 8.3.3 Grain Size Effect -- 8.4 Factors Determining the Strength of CFB Steels -- 8.4.1 Effect of Alloying and Microalloying Elements -- 8.4.2 Bainite Morphology -- 8.4.3 Fresh Martensite -- 8.5 Effects of Parameters of Retained Austenite on Ductility and Localized Fracture -- 8.6 Summary -- References -- Chapter 9: Candidates for the Third Generation: Medium Mn Steels -- 9.1 Introduction -- 9.2 Parameters Affecting the Properties of Mn Steels -- 9.2.1 Effects of Temperatures and Time of Intercritical Annealing -- 9.2.2 Effect of Volume Fraction of Retained Austenite and Its Stability on the Properties of Medium Mn Steels -- 9.2.3 Effect of Manganese -- 9.3 Localized Deformation and Strain Hardening in Medium Mn Steels -- 9.4 Effect of Initial Microstructure and Austenite Reverted Transformation on the Evolution of Microstructure and Mechanical P... -- 9.5 Effect of Alloying and Microalloying on Mechanical Behavior of Medium Mn Steels -- 9.6 On the Stability of Retained Austenite in Medium Mn TRIP Steels -- 9.6.1 Effect of Carbon Content -- 9.6.2 Effect of Mn -- 9.6.3 Effect of Austenite Grain Size -- 9.7 Summary -- References -- Chapter 10: Candidates for Third-Generation Steels: QandP Processed Steels
  • 10.1 Introduction
http://library.link/vocab/cover_art
https://contentcafe2.btol.com/ContentCafe/Jacket.aspx?Return=1&Type=S&Value=9783319191652&userID=ebsco-test&password=ebsco-test
Dimensions
unknown
http://library.link/vocab/discovery_link
{'f': 'http://opac.lib.rpi.edu/record=b4384133'}
Extent
1 online resource (415 pages)
Form of item
online
Isbn
9783319191652
Media category
computer
Media MARC source
rdamedia
Media type code
c
Sound
unknown sound
Specific material designation
remote

Library Locations

    • Folsom LibraryBorrow it
      110 8th St, Troy, NY, 12180, US
      42.729766 -73.682577
Processing Feedback ...